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Abstract— The second-order statistics of indoor directional
channels are investigated using millimeter-wave (mmWave) band
(30.4–37.1 GHz) ultrawideband (UWB) channel measurements.
Considering two main mmWave system assumptions (high band-
width and high beamforming gain), this paper aims to investigate
the validity of the Rayleigh–Rice fading models for the cluster
fading envelope. The results from the mmWave band study are
compared to an already well-studied lower frequency FCC band
(3.4–10.1 GHz). During the measurements, only selective objects
(emulated multipath clusters in the propagation channel) are
illuminated in a small lecture room. The experiments show
that for both UWB channels, the complex received (Rx) signal
is a circularly symmetric non-Gaussian random variable with
highly correlated inphase (I) and quadrature (Q) components.
These properties demonstrate that the intracluster multipath
components (MPCs) structure is sparse. Consequently, modeling
the cluster fading envelope with Rayleigh–Rice distribution is
not realistic. Therefore, the sum-of-cisoids principle is used for
intracluster multipath modeling which inherently considers a cor-
relation between I and Q components. It has been established that
a reasonably good approximation of the cluster fading envelope
can be obtained with N = 3−6 equal amplitude cisoids. However,
we remark that Rayleigh–Rice models may become realistic
cluster fading envelopes for narrowband mmWave systems.

Index Terms— Channel modeling, millimeter-wave (mmWave)
measurements, mmWave systems, multipath clusters, radio chan-
nels, small-scale fading, ultrawideband (UWB) channels.

I. INTRODUCTION

CHANNEL models depend on system assumptions. Given
the same propagation channel, systems with differ-

ent properties—e.g., bandwidth and beamforming gain—
may see different channel fading behavior [1]–[4]. Channel
models should, thus, be capable of translating these effects
when evaluated for a particular communication system.
For example, 3GPP-LTE systems [5] apply spatial pre-
processing and postprocessing to narrowband channels,
and therefore, 3GPP-SCM [6] and WINNER [7] models
are based on narrowband assumptions such as local-sense
stationary and uncorrelated scattering of resolvable taps
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also known as clusters. Cluster amplitude fading enve-
lope in 3GPP-SCM/WINNER models is modeled as a
Rayleigh distributed random process.1 Second-order statistics2

of Rayleigh–Rice fading signals show that the Rx signal Z =
X + jY is a circularly symmetric complex Gaussian random
process. It means that both real (X) and imaginary (Y ) parts
of Z are mutually uncorrelated Gaussian random variables
having equal variances [8], [9]. This is justified by the central
limit theorem which requires a superposition of an appreciable
number of scattered/diffuse multipath components (MPCs)
(N) [10]. Thus, Rayleigh and Rice fading models correspond
to rich scattering channels and the same is true for Loo [11],
Suzuki [12], and Nakagami [13] fading models.

Cluster fading envelopes modeled by the state-of-the-art
millimeter-wave (mmWave ) channel models are also based
on the rich scattering assumption. For example, the cluster
fading envelope in [14]–[16] follows Rayleigh, while oth-
ers [17]–[20] employ Rician fading distribution. Furthermore,
fading studies [21]–[25] of directional line-of-sight (LOS)
and non-LOS links show that Rx signal magnitude statistics
are in good agreement with the Rician fading Rx envelope.
Zöchmann et al. [26] demonstrated that the two-wave with
diffuse power (TWDP) model is more suitable than the Rician
fading model. The major difference between the Rice and
TWDP fading model is that the former assumes a single
fixed amplitude path, whereas the later assumes two paths.
Romero-Jerez et al. [27] proposed fluctuating two-ray (FTR)
model based on the experimental data in [22]. Note that,
FTR model generalizes the TWDP model by introducing
random fluctuations in both fixed amplitude paths. Similar
to Rayleigh–Rice fading channels, both TWDP and FTR
models represent rich scattering environment due to the cir-
cularly symmetric complex Gaussian assumption on the scat-
tered MPCs.

1In general, Rayleigh–Rice fading models are used to describe both omni-
directional and multipath cluster fading channels. However, in this paper,
they are discussed only to describe cluster fading statistics. In addition,
in narrowband channels, a multipath cluster itself is often referred to as a
resolvable MPC. However, in this paper, the terms like MPCs, cissoids, and
paths always refer to intracluster MPCs. Finally, the term channel means only
a group of MPCs corresponding to a multipath cluster unless otherwise stated
as an omnidirectional channel.

2In literature, second-order fading statistics of the Rx envelope are described
by temporal correlation functions, average fade duration (AFD) and level-
crossing rate (LCR) of the Rx signal magnitude. However, studies in this
paper are limited to the investigation of temporal correlation properties of
the Rx signal. Motivations and detailed insights into each of the analyzed
temporal correlation function are described in Section IV.
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In contrast to the 3GPP-LTE systems [5], mmWave systems
are supposed to operate with high gain antennas and high
channel bandwidths. High gain antennas act as spatial filters
for a propagation channel and a high bandwidth reduces
smearing of MPCs in power delay profiles (PDPs). These
features of mmWave systems may result in a sparse illu-
mination of a cluster and radio channels (including antenna
as a part of the channel) may appear as sparse multipath
channels (N < 10). Note that the central limit theorem cannot
be applied in sparse channels. Consequently, the statistical
properties of a sparse multipath channel vary considerably
from rich scattering channels as demonstrated in [28]–[30].
In particular, temporal correlation properties in [28] show that
Z is a circularly symmetric non-Gaussian complex random
variable for small N . Therefore, both X and Y cannot be
modeled as statistically independent random processes [28].
Note that in a sparse multipath channel, the capacity of
multiantenna systems scales sublinearly with a number of
antenna elements [31]. Therefore, for accurate evaluations and
predictions of mmWave system designs, fading assumptions
and multipath modeling approaches in the standardized chan-
nel models such as 3GPP-TR 38.901 [14] need to be revised.

The main contribution of this paper is to show that when
mmWave system features such as high bandwidth and/or
beamforming gain are considered, then the conventional
Rayleigh–Rice fading models for the cluster fading envelope
may not be realistic. From hereinafter, the Rayleigh–Rice
channels are jointly referred to as reference models. In contrast
to the reference models, the temporal correlation properties of
measured channels demonstrate that I and Q components of
the Rx signal are highly correlated. Such properties explain
that the measured multipath channels are sparse. Therefore,
in the final part of this paper, a sum-of-cisoids (SOC)-based
deterministic intracluster multipath modeling approach is pro-
posed to reproduce the fading statistics of the measured
mmWave channels. To the best of our knowledge, no such
work exists in the mmWave channel modeling literature. Note
that the same measurement data were used in our earlier
work [24], [25], [32], but the presented insights in this paper
are novel. The foundation of this paper is described by
Pätzold and Rafiq [28], which provides a comprehensive study
on theoretical differences between rich and sparse multipath
channels.

The remainder of this paper is organized as follows.
Details about the measurement campaign and the channel
data processing are described in Sections II and III, respec-
tively. In Section IV, the sparsity of intracluster multipaths is
established through second-order statistical characterization of
measured channels. Section V-A focuses on the extraction of
parameters of interest, such as the standard deviation of the
Rx signal magnitude around the local mean. These parameters
are then used to derive SOC-based intra-cluster multipath
modeling approach in Section V-B. Finally, conclusions are
drawn in Section VI.

II. SCENARIO AND THE CHANNEL SOUNDING SETUP

Double-directional dual-band channel measurements are
performed with a channel sounder which transmits a chip

sequence of length 4095 with a chiprate of 6.75 GHz [33].
Channel sounder offers an instantaneous 3 dB absolute band-
width of 4 GHz after calibration, where each frequency
domain sample roughly corresponds to an absolute bandwidth
of 2 MHz. The dynamic range of the channel sounder is
up to 70 dB, which enables the identification of very weak
MPCs. The measured channel impulse response (CIR) is post-
processed by estimating a noise floor N f ( in decibels) using
a procedure described in [34] and all time domain samples
below N f + 10 dB are zeroed out. Finally, a 25 dB dynamic
range is applied to the CIR.

Fig. 1(a) shows a 360◦ panoramic view of a small lecture
room at the Technische Universität Ilmenau campus. One
of the inner brick made walls is covered by the metallic
blackboards and the opposing wall is covered with 5 cm thick
sound absorbers, whereas the outer wall has metallic frame
windows. Doors and windows of the room are closed during
measurements to ensure a static time-invariant propagation
environment. The transmitter (Tx) is placed at a fixed position
near the blackboard, whereby the Rx unit is placed on a
rail with an initial 4.06 m distance between Tx and Rx,
as shown in Fig. 1(a) and (b). In order to track changes
in the time-varying radio channel, the Rx is moved in a
certain direction with a step distance of �xs according to
the setups shown in Fig. 1(c). To measure an aliasing-free
Doppler power spectrum, Rx step distance should be at least
two snapshots per wavelength λc of the center frequency fc—
i.e., �xs ≤ (λc/2) [35]. In this measurement campaign,
the value �xs = 2 mm is maintained for both frequency bands
which implies measuring 4 and 21 snapshots per wavelength at
the mmWave and the FCC-ultrawideband, respectively. In this
way, the chosen �xs guarantees aliasing-free Doppler power
spectrum measurements for both the bands. A total measured
distance from the first to the last Tx–Rx position is around
30 cm in each of four experimental setups shown in Fig. 1(c).
The direction of Rx motion is same (i.e., away from Tx)
for each measured radio channel setup; however, Tx and
Rx antenna pointing angles may change depending upon the
object being illuminated. As a result, Tx–Rx link distance
increases/decreases with Rx movement as shown in Fig. 1(c).
The height of both Tx and Rx units is around 1.68 m, which
is approximately an eyesight height. Note that the Tx and
Rx antenna center points are not perfectly aligned with each
other as both are not placed right in front of or behind each
other (on the same axis) as shown in Fig. 1(b). Due to this
misalignment in the Tx–Rx axis, additional reflections from
other objects in the room such as chairs and tables are also
possible along with reflections from the intended surface.

For both FCC and mmWave bands, dual-polarized
Tx–Rx horn antennas each with a 3 dB half-power
beamwidth (HPBW) of 30◦ are used; further details are shown
in Table I. During the measurements, different reflection
surfaces are illuminated such that the intersection area of 3 dB
Tx–Rx antenna footprints is around 3.4 m2 on the surface.
This intersection area imitates a multipath cluster referred to as
geometry-based cluster in the literature [36]. Geometry-based
clusters imitate a physical interacting object (IO) for MPCs
in a realistic environment. On the other hand, conventional
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Fig. 1. Measurement scenario of small lecture room H-1519 at TU Ilmenau
campus and double-directional measurement setups. Note that the wall consid-
ered in these experiments is a sound absorbing wall. (a) 360◦ panoramic view.
(b) Overview of Tx–Rx positions. (c) Overview of Tx–Rx antenna pointing
angles.

parameter-based clusters are based on the similarity of mul-
tipath channel parameters such as their time-delay, departure,
and arrival angles. Parameter-based clusters do not necessarily
correspond to a particular IO in an environment and much of
their accuracy depends upon the applied multipath clustering
algorithm. Furthermore, extraction of parameter-based clusters

TABLE I

CHANNEL SOUNDING AND MEASUREMENT PARAMETERS

requires array measurements, which is not the case here. We
used 30◦ HPBW antennas as a compromise between low- and
high-directive antennas due to the following reasons.

1) Decreasing antenna gain, e.g., to omnidirectional anten-
nas may result in MPC contributions from a wide
angular spread, thus violating the cluster definition.3

Therefore, additional filtering in the delay and space
domain would be required.

2) Very high gain antennas, in the worst case, may illumi-
nate only a single MPC and not a group of MPCs to
introduce small scale fading. In such a case, if a single
path is illuminated, there would be no random process
to model.

III. CHANNEL DATA PROCESSING

Let H ab(t, f ) be the wideband channel transfer func-
tion (CTF) when a signal is transmitted with a polarization
a and received with a polarization b, where a, b ∈ {H, V }.
We assume that the directional CTF is frequency flat, which
is quite plausible assumption as e directional antennas illumi-
nate only the selective objects in particular directions, hence
resulting in very low delay spread values and a large coherence
bandwidth. Let n f denote the total number of the frequency
samples in the CTF at a particular time instant t , then

H ab(t, f ) =
n f∑

n=1

Aab(t, n)e jθab(t, f )δ( f − n� f ) (1)

where Aab and θab are the magnitude and phase responses
of the channel at the nth frequency bin of the CTF at a time
instant t . For the bandwidth reduction (if required), frequency
domain samples are extracted while maintaining fc and length
of the full-band frequency domain channel in following way:

H ab
W (t, f ) =

{
H ab(t, f ), fl ≤ f ≤ fh

0 otherwise.
(2)

Now, the channel absolute bandwidth W is defined as W =
fh − fl , where fh and fl are the highest and lowest frequencies
of the band, respectively. Let τ be the time delay of an
MPC, then the time domain CIR vector hab

W (t, τ ) is obtained
by the inverse Fourier transform of H ab

W (t, f ). Fig. 2 shows
some example PDPs of CIRs (without noise floor removal)

3We follow the most general definition of a multipath cluster—i.e., a group
of MPCs propagating together in delay and space domains having similar
departure and arrival angles.
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Fig. 2. CIR for various absolute bandwidths in setup # 1 (LOS case) for
mmWave band, HH polarization setup. Note that each PDP is normalized
locally to its peak power level i.e., sup{Pab

W (τ )}.

for different channel bandwidths. These PDPs clearly show a
reduction in the multipath smearing with an increase in the
channel bandwidth. Consequently, high-bandwidth channels
are sparse as compared to narrowband channels.

IV. SECOND-ORDER STATISTICAL CHARACTERIZATION

OF MEASURED CHANNELS

In general, second-order fading statistics are characterized
by statistical functions known as LCR and AFD [9], [37].
Since our objective is to verify the circular symmetric com-
plex Gaussian assumption associated with the Rx signal of
the reference models, therefore investigations in this section
are restricted to temporal correlation properties of measured
multipath channels.

A. Temporal Autocorrelation Function

Now, we analyze the differences between the temporal
autocorrelation functions (ACF) of measured channels and the
reference model. Let fD be a Doppler shift in an MPC received
at a time delay τ , then the Doppler-variant impulse response
hab

W (τ, fD) is Fourier transform of hab
W (τ, t) along time t . Let

hab
W (τ, t) be widesense stationary (WSS) in t , then the Doppler

power spectral density (PSD) is defined as

�h( fD) =
∫ ∞

0

∣∣hab
W (τ, fD)

∣∣2
dτ · (3)

Let h(t) denote a random sample of the measured mul-
tipath channel at a time instant t , then the temporal ACF
ch(�t) = E{h(t)h∗(t + �t)}4 is equivalent to the inverse
Fourier transform of �h( fD). For �t > 0, the absolute value
of ch(�t) quantifies the channel coherence time (or distance)
and its knowledge plays a key role in channel tracking
algorithms [38]. For the reference model, ch(�t) =
J0(2π fmax�t) is a real-valued function having a symmetric
U-shaped Doppler PSD, where J0 is a zeroth-order Bessel

4(·)∗ denotes the complex conjugate of the function.

Fig. 3. Analysis of ACF for different reflection surfaces, VV polarization,
fmax = 100 Hz, W = 4 GHz. Speed of the Rx is equal to 10 km/h. Recalling
that the measurements do not consider a highly controlled environment such
that MPCs are received only from an intended reflection surface. Therefore,
in some measurements, an abuse of multipath cluster definition (same delay
and the same AoA of MPCs) is possible. (a) FCC band. (b) mmWave.

function of first kind and fmax is the maximum Doppler
frequency. However, ch(�t) in realistic channels is expected to
be a complex-valued function with asymmetric Doppler PSDs
which are caused either by nonisotropic scattering from the
propagation environment or by use of directional antennas as
shown in Fig. 3.5 Clearly, the ACFs of measured multipath
clusters differ considerably from the reference model. For
the FCC band, a high similarity between the Doppler PSDs
(and ACFs) shows that the impact of surface scattering is not
very significant. For the wall and double bounce reflections,
a comparison of Doppler PSDs of both bands shows that

5Note that comparisons shown in Figs. 3 and 4 consider same absolute band-
width (W ) for both FCC and mmWave frequency bands. Similar comparisons
with same relative bandwidth may also provide an interesting insight into the
fading statistics. For example, due to increased smearing of MPCs, we expect
that fading statistics of clusters at the FCC band would be comparatively
closer to the reference models.
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TABLE II

CORRELATION DISTANCE IN TERMS OF WAVELENGTH
FOR DIFFERENT CLUSTERS

a number of peaks6 in the mmWave band are higher than
FCC band. These observations are in-line with the hypothesis
in [39], which states that smaller wavelengths at mmWave
frequencies may lead to more diffuse scattering than lower
frequency bands. Assuming that a channel is correlated if
|ch(�t)| ≥ 0.5, results in Table II summarize correlation
distances in measured channels. One may note that, for the
mmWave band, the correlation distances for different mea-
surement setups differ considerably from each other, whereby
they are quite similar for FCC band. This observation clearly
demonstrates that the influence of surface scattering at the
correlation distance is more pronounced in the mmWave band
than the FCC band.

B. Temporal Cross Correlation and Complementary
Autocorrelation Functions

Now, we aim to analyze sparsity of intra-cluster multipaths
in the measured channels. For that, temporal cross correla-
tion function (CCF) γI Q(t1, t2) = E{�(h(t1))	(hT (t2))} is
studied, which measures correlation between real (�) and
imaginary (	) components of the channel. Recalling that a
vanishing CCF γI Q(�t) ≈ 0, ∀�t ≥ 0 explains that Rx signal
is a complex Gaussian random variable which corresponds to
a rich scattering channel and vice versa. In addition, for both
FCC and mmWave bands, a comparative analysis is done to
investigate if the measured Rx signal is a circularly symmetric
complex random variable or not. This is analyzed by the com-
plementary ACF (CACF), i.e., rh(t1, t2) = E{h(t1)hT (t2)},
which measures correlation between h(t) and its complex
conjugate h∗(t). A channel h(t) is said to be the second-
order stationary, if it is WSS and the CACF is only a function
of �t [40]. The propagation channel h(t) with a vanishing
CACF rh(�t) ≈ 0, ∀�t ≥ 0 is a circularly symmetric
complex random variable [40]. Assuming that h(t) is second-
order stationary, then the real and imaginary parts of rh(�t)
are defined as

�{rh(�t)} = μI I (�t) − μQ Q(�t) (4)

and

	{rh(�t)} = γI Q(�t) + γQ I (�t) (5)

where μI I (�t) and μQ Q(�t) are the ACFs of I and Q
components, respectively. Note that, in case of a circularly
symmetric complex Gaussian signal, μI I (�t) = μQ Q(�t)
and γI Q(�t) = γQ I (�t) = 0, resulting in rh(�t) = 0,
∀�t ≥ 0. However, every circularly symmetric signal
is not always a complex Gaussian random variate. In fact,

6By peaks, we mean the number of ripples in the Doppler PSDs shown
in Fig. 3 which corresponds to the intracluster scattered MPCs.

rh(�t) = 0 also when μI I (�t) = μQ Q(�t) and γI Q (�t) is
a nonzero odd function [41]. A nonzero CACF establishes
the following facts: 1) the second-order statistics have not
been fully described by ch(�t) and 2) the channel h(t)
is a noncircular or improper complex vector [42]. In this
case, beamforming techniques based on the widely linear
processing result in higher performance gains over the linear
counterparts [42].

Fig. 4 shows that both γI Q(�t) and rh(�t) are roughly
equal to zero at �t = 0, which explains that I and Q
components of the Rx signal are (instantaneously) mutually
uncorrelated. However, γI Q(�t) �= 0 for �t > 0 and as such
differs from the reference model. For �t > 0, Fig. 4(c) and (d)
shows that the values of γI Q(�t) are higher for FCC than
the mmWave band. This observation indicates that wall and
double bounce clusters when illuminated with FCC band are
sparser than mmWave band demonstrating an increased surface
scattering at the mmWave band. Similarly, for the mmWave
band, LOS, and blackboard clusters are sparser than the wall
and double bounce reflections. This is due to the reduced
scattering in LOS and black-board clusters as compared to
the wall and double-bounce reflections, which agrees with
the intuition and from the Doppler PSDs in Fig. 3. Nonzero
CCFs in Fig. 4 imply that the rich scattering assumption
made in the Rayleigh, Rice, TWDP, and FTR fading models
is not satisfied. For all �t > 0, the results γI Q(�t) �= 0
and rh(�t) ≈ 0 demonstrate that μI I (�t) = μQ Q(�t) and
γI Q(�t) is an odd function. As such, we conclude that the
complex Rx signal is a circularly symmetric non-Gaussian
random variable with a rotationally invariant probability dis-
tribution function (PDF). These properties are in agreement
with correlation properties of sparse channels in [28]. From
the system performance perspectives, in this case, both linear
and its widely linear beamforming counterpart will result in
similar performances [42].

Here, it is important to emphasize that in narrowband
channels, the amplitude of γI Q(�t) decreases but does not
vanish to zero due to the asymmetry of the Doppler PSD.
The Rx envelope will then converge toward the reference
model [43]. The presented results and discussions above lead
to the following remark. With limited bandwidth (narrowband
assumption) at lower frequency bands, the reference model
assumption as used in 3GPP-TR 38.901 [14] and WINNER [7]
is valid and sufficient. However, the reference model is not
realistic when it comes to: 1) larger bandwidth even at bands
below 10 GHz and 2) mm-wave bands with traditionally higher
bandwidths.

V. PARAMETERIZATION AND MULTIPATH MODELING

OF MEASURED CHANNELS

In this section, from the measurements, we first extract the
parameters required for the intra-cluster multipath modeling.
After that, an SOC-based deterministic multipath modeling
approach is proposed.

A. Parameter Extraction From Measured Channels

1) Mean Value: We normalize the CTF H ab
W (t, f ) such

that the ensemble average of the time-varying Rx signal
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Fig. 4. Analysis of CACF and the CCF for different measurement setups, VV antenna polarization setup, fmax = 100 Hz, W = 4 GHz. Speed of the Rx is
equal to 10 km/h. (a) LOS. (b) Black board refl. (c) Wall refl. (d) Double bounce refl.

magnitude mRx(t) is

ρ = E{mRx(t)} = 1 (6)

where, from the Parseval’s relation

mRx(t) =
√∫ ∞

0

∣∣hab
W (t, τ )

∣∣2
dτ =

√∫ ∞

−∞
∣∣H ab

W (t, f )
∣∣2

d f .

(7)

This normalization removes the global pathloss (due to
an initial Tx–Rx distance) in each measurement. However,
the local pathloss or path gain effect due to the movement
afterward on the rail is maintained which introduces a Doppler
shift in MPCs. In addition, the normalization in (6) implies that
the mean value of the mRx(t) remains constant, irrespective of
the bandwidth and the measurement setup.

2) Standard Deviation (σ0): The standard deviation char-
acterizes the variations in the magnitude of the Rx signal.
The results shown in Fig. 5 compare σ0 as a function of W .
It can be observed that σ0 differs considerably in different
propagation setups implying a strong influence of scattered
MPCs in defining the cluster fading behavior.

Intuitively, depending upon a propagation scenario,
σ0 should decrease up to a particular bandwidth W0 known
as stability bandwidth7 [1]. An increase in bandwidth beyond
W0 does not result in a considerable change in Rx signal
fading statistics and the value of σ0. Therefore, a dual slope
regression fit is quite intuitive and it results in a reasonably
good approximation. Higher order polynomials may provide
a better approximation, but the slope-constant model in (8) is
proposed to maintain simplicity and intuitiveness

σ ab
0 (W ) =

{
c0 − m log10 W, if W ≤ W0

c1 otherwise.
(8)

In (8), the bandwidth W is in gigahertz, the slope m describes
the rate of descent in σ ab

0 (W ), constant c0 is the average
amplitude of I/Q components of plane waves in narrow-
band channels and c1 is their amplitude at the stability band-
width W0. Table III shows the parameter values of the model
in (8) for copolarized and cross-polarized measured channels.

7Stability bandwidth corresponds the system bandwidth at which most of
MPCs in the channel are resolved. Therefore, an increase in bandwidth beyond
W0 does not cause any significant variations in the fading envelope.

It is interesting to note that on average c0 has higher values
in case of wall reflections, demonstrating a large amplitude
fading in narrow-band channels. However, the slope factor m
is also higher than other propagation setups, demonstrating
a relatively faster convergence toward nonfading regime with
an increase in W . The reason behind this observation is that
MPCs are relatively well separated in the delay domain in
case of wall reflections than other measured channel setups.
Consequently, intracluster MPCs are resolved more quickly
with W resulting in higher values of m. The mean square
error (MSE) between measurements and the model in (8) is
calculated as

ξ =
nB∑

i=1

⎛

⎜⎝ σ ab
0 (Wi )︸ ︷︷ ︸

model in (8)

− σ̃ ab
0 (Wi )︸ ︷︷ ︸

est. from measurements

⎞

⎟⎠

2

(9)

where nB corresponds to a total number of bandwidth samples.
Table III shows the normalized MSE (ξn), computed by
normalizing ξ in (9) by

∑nB
i=1 σ̃ ab

0 (Wi ). Very small values
of the MSE in Table III show a good agreement between
measurements and the model in (8).

B. Intracluster Multipath Modeling of Measured Channels

We now use the parameters (mean and standard deviation)
extracted in the earlier Section V-A to model intracluster
multipath attenuation gains cn and total number of scattered
MPCs N per cluster. Multipath modeling methodologies in the
state-of-the-art channel models can be mainly classified into
deterministic and stochastic parameter computation methods
as shown in Table IV. In a deterministic method, gains cn and
AoAs (or Doppler frequencies fn) are set to a fixed value
within a small scale fading area (drop duration). Different
snapshots of the channel are then generated only by the
uniform random variation of multipath phases θn . In contrast,
with a stochastic method, each channel snapshot is generated
by a random combination of cn , AoAs, and multipath phases.
Given a certain theoretical reference model, the accuracy of
the deterministic method improves by increasing N , while
the stochastic method requires exhaustive channel sounding
measurements for reliable statistics of multipath parameter
estimates. In addition, estimates of cn and N are largely

Authorized licensed use limited to: MINSEOK KIM. Downloaded on November 05,2020 at 08:23:44 UTC from IEEE Xplore.  Restrictions apply. 



2628 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 67, NO. 4, APRIL 2019

Fig. 5. Standard deviation (σ0) of the received signal magnitude as a function
of channel absolute bandwidth, mmWave band, VV polarization.

TABLE III

PARAMETER VALUES FOR EMPIRICAL MODEL OF AVERAGE DIFFUSE

MPCS AMPLITUDES AS A FUNCTION OF BANDWIDTH

limited by the delay resolution of the channel sounder. More
discussions on stochastic and deterministic parameter compu-
tation methods can be found in [44] and [45].

Intracluster MPC modeling approach in this paper is based
on the deterministic parameter computation method. Analy-
sis of correlation properties in Section IV reveal that the
intracluster MPC structure is sparse in measured channels.
Consequently, the measured Rx envelope will not closely
follow the reference model. Therefore, we consider PDF of the
measured Rx signal magnitude as a performance benchmark.
We use the SOC simulation model [43], as it inherently
assumes that I and Q components of Rx signal envelope are
correlated for small N . This is not the case for classical sum-
of-sinusoids (SOS) model proposed earlier by Clarke [10] and
Jakes and Cox [48]. Of course, one can modify the classical
SOS principle to generate correlated I and Q components as
in the SOC simulator which is a subclass of the SOS model.
As N → ∞, both SOC and SOS simulators result in the ref-
erence model distribution with (roughly) uncorrelated I and Q

TABLE IV

CLASSES OF INTRACLUSTER MPC MODELING METHODOLOGY
AND CHANNEL MODELS CORRESPONDING TO EACH CLASS

components. Let ρ, fρ , and θρ be the gain, Doppler frequency,
and phase of the LOS/dominant path, then a nonzero mean
SOC random process is defined as

Z(t) = ρe j (2π fρt+θρ) +
N∑

n=1

cne j (2π fnt+θn). (10)

Absolute value |Z(t)| in (10) defines the envelope process.
Assuming that cn and fn are the constant entities and
θn is independent identically distributed random process,
then by taking into account that I and Q components of
Rx envelope are correlated, the PDF of an SOC process
becomes [9, Eq. (4.120)]

pZ(r) = (2π)2r
∫ ∞

0

[
N∏

n=1

J0(2π |cn|x)

]

·J0(2πr x)J0(2πρx)xdx, N ≥ 1 (11)

where r is the Rx signal magnitude. Due to the correlated
I and Q assumption, the PDF in (11) can provide a nice fit
to the PDF of measured Rx envelope for small N . However,
this requires extensive evaluation of (11) for N ≥ 1 and
comparison with the PDF of the measured Rx envelope. These
evaluations are driven by the parameters ρ and σ0 extracted
from the measurements in Section V-A. During the evaluation
of (11), mean value defined by the non-centrality parameter ρ
of the distribution is fixed to ρ = 0 dB due to the normal-
ization in (6). Constant amplitudes of N scattered MPCs are
plugged in (11) as following: 1) cn = σ0

√
2/N , i.e., equal

amplitude sinusoids or 2) cn = R
√

σ 2
0 /N , i.e., Rayleigh

distributed amplitude of sinusoids. Note that the second
moment parameter σ0 in cn establishes a connection between
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Fig. 6. Intracluster multipath modeling process with deterministic parameter computation methods.

Fig. 7. Analysis of KLD versus N , mmWave band, σ0 is obtained by using the model in (8), ρ = 0 dB, VV polarization, W = 4 GHz. (a) LOS. (b) Black
board reflection. (c) Wall reflections. (d) Double bounce reflections.

measurements and the multipath modeling. From (11), it is
clear that the PDF of Rx envelope does not depend upon the
Doppler frequency or AoA of an MPC. Therefore, modeling
of fn is not considered in this paper. Fig. 6 summarizes
the steps of our proposed deterministic multipath modeling
methodology.

Let P and Q be the probability mass functions of the
measured Rx envelope and the PDF in (11), respectively. The
relative entropy DK L(P � Q) as known as Kullback–Leibler
distance (KLD) quantifies a distance between P and Q [49]

DK L(P � Q) =
∑

r

P(r) log

(
P(r)

Q(r)

)
· (12)
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Since DK L(P � Q) may not be equal to DK L(Q � P),
a symmetric metric is built by taking the average of two
opposite KLDs in the following way:

DK̄ L(P � Q) = 1

2
[DK L(P � Q) + DK L(Q � P)]· (13)

A convergence of KLD in (13) toward zero demonstrates that
the probability mass functions P and Q are in close agreement
with each other.

If cn = σ0
√

2/N , then results in [43] show that (11)
provides a very good approximation of the reference model

for N ≥ 10. However, when cn = R(
√

σ 2
0 /N ), results

in [28] show that (11) converges to the reference model for
N ≥ 50. These results form the basis of our analysis in
Fig. 7 where symmetric KLDs for both deterministic MPC
amplitude modeling approaches are compared for different N .

Due to the stochastic nature of cn = R(
√

σ 2
0 /N ), results from

12 different realizations of cn are plotted for each N . If cn =
σ0

√
2/N , results in Fig. 7(a) and (b) demonstrates that (11)

provides an excellent approximation of Rx envelope at N = 3.
However, KLD increases again for N > 3, i.e., when (11)
converges toward the reference model. This explains that the
measured Rx envelope does not closely follow the reference
model. For LOS and black board reflections, these results
are theoretically expected due to considerably higher cross
correlation values in Fig. 4(a) and (b) and the sparse scat-
tering shown by Doppler PSDs in Fig. 3(b). In narrowband
channels, Rx envelope will converge toward the reference
model due to an increased smearing of the intracluster MPCs.
From Fig. 7(a) and (b), one may argue that the KLD between
the measured Rx envelope predicted by (11) and the reference
model is not large enough. We emphasize that when the system
considers single Tx–Rx antenna elements, channel correlation
properties show major differences between sparse and rich
scattering channels as demonstrated in Section IV. Similar
results are evident in all measured channels at the 7 GHz
frequency band due to considerably high cross correlation
values shown in Fig. 4.

Considering again that cn = σ0
√

2/N , the case of wall
and double-bounce reflections in Fig. 7(c) and (d) shows
that (11) provides the best approximation of the measured
Rx envelope ∀N ≥ 10. Small KLD values indicate that the
measured Rx envelope is in good agreement with the reference
model. However, the KLD does not approach toward zero with
an increase in N . This is due to the existence of nonzero CCFs
shown in Fig. 4(c) and (d), which is not a case in the reference
model. These results also indicate that SOC simulation model
becomes sensitive at lower cross correlation values. From
Fig. 7, it is also clear that Rayleigh distributed scattered MPC
amplitudes does not provide a better approximation of the
measured Rx envelope than equal amplitude MPCs.

VI. DISCUSSION AND CONCLUSION

Investigation of temporal correlation properties and Doppler
PSDs in this paper shows that the intracluster number of MPCs
are quite low for both FCC and mmWave band. This multipath
sparsity depends on the bandwidth and/or beamforming gain

with which a system illuminates a multipath cluster. As the
rich scattering assumption is not satisfied, the cluster fading
envelope does not closely follow the Rayleigh–Rice fading
envelope. This shows that, for the cluster fading envelope,
the use of Rayleigh–Rice fading distributions in the mod-
els [14]–[20] is not realistic. In fact, cluster fading distributions
with a single nonfluctuating path along with N = 3 − 6 equal
amplitude scattered MPCs provide a considerably good but
not an optimal approximate of the measured Rx magnitude.

The empirical bandwidth-dependent model proposed in this
paper explains that the standard deviation (or fading depth)
of the cluster fading envelope vanishes exponentially with an
increase in the channel bandwidth and as shown in [3] with
the antenna gain. Using the same measurement campaign,
results reported earlier in [32] show that the randomness in
the cross-polarization power ratio vanishes exponentially with
the bandwidth. In other words, randomness in the 2 ×2 polar-
ization coupling matrix also vanishes with the bandwidth.
This demonstrates that, due to their wider bandwidths and/or
beamwidths, mmWave systems will experience reduced/no
small scale fading. In contrast, 3GPP-TR 38.901 [14] model
demonstrates a high-Rx signal magnitude fading, first due to
the Rayleigh fading assumption on the cluster, and second
due to the polarization coupling matrix which is modeled as
random even in the large bandwidth extension.

Results also show that the temporal correlation properties
and correlation distances for different clusters are quite similar
to each other for the FCC band, but differ considerably
in the mmWave band. This shows that mmWave bands are
more sensitive to the type of reflection surfaces than the
FCC band. In contrast, the fading envelope of all clusters in
3GPP-TR 38.901 [14] model is Rayleigh distributed, irrespec-
tive of any frequency band in range 0.5–100 GHz.

The presented results motivate us to study the multipath
clusters in outdoor channels, where the cluster to the Rx
distance could be much larger than in indoor channels. In addi-
tion, more rough surfaces as reflecting objects need to be
investigated along with investigations at higher frequency
bands.
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