IV - 3 デジタル変復調回路

1 目的

無線通信システムの基礎としてディジタル変復調回路を取り上げ,変復調回路をソフトウェアで 実装し,変復調理論や通信方式,ディジタル信号処理の理解を深めるとともに,データ伝送シミュ レーションを通じて,電波伝搬や誤り訂正,情報理論などの基礎を理解する.

2 概要

無線通信とは,電磁波(電波)を用いて情報を伝達する手法の総称である.放送を始め,携帯電話,無線LAN,さらにはゲーム機のリモコンやワイヤレスヘッドフォンなど,身の回りにも様々な 無線通信が用いられている.ここでは,データ伝送シミュレーションの準備として,情報の伝達方 法である変調,帯域信号の生成,伝搬路推定と等化,変調信号から情報信号を取り出す復調につい て説明する.シミュレーションでは,基礎理論をベースに位相変調を用いる変復調回路をPython または Matlab を用いて実装し PC 上で動作させ理論を確かめる.

関連する講義:デジタル信号処理(3年第1ターム),通信方式基礎(3年第4ターム)など

3 基礎理論[1,2]

送信する情報バイナリビット列(2進ディジタル情報)は,変調方式によってKビットでまとめられたメッセージとして $M(=2^K)$ 個の信号波形(シンボル波形)を用いて伝送される¹.ここで,送信機から出力された信号は,無線伝搬路を通して熱雑音が加わった信号で受信機に入力される.図1に無線伝送システムモデルを示す.

3.1 信号の表現

符号化された情報ビット系列は、メッセージ(Kビット)単位で符号化とパルス整形され、有限の帯域をもつ基底帯域信号(baseband signal: ベースバンド信号)u(t)に変換される.この信号から変調された信号s(t)は、通常、搬送波周波数 f_c を中心とした有限の帯域をもつ帯域信号

図 1: 無線伝送システムモデル

¹後述のように, BPSK の場合, K = 1 ビット単位で送信するため M = 2 個の信号波形が, QPSK の場合は, K = 2 ビット単位で送信するため K = 4 個の信号波形が用いられる.

図 2: 基底帯域信号の概念

図 3: 直交変調器

(passband signal: パスバンド信号)となる.ここでは,帯域信号の表現と,それと等価な基底帯 域信号(複素数表現)について説明する.

アンテナから送信される帯域信号は次式のように表される.

$$s(t) = \cos\left(2\pi f_c t + \theta(t)\right) \tag{1}$$

これは,位相 $\theta(t)$ を持つ搬送波であり,メッセージの送信周期(T = 1/R)ことにその位相が変化するため '変調波' と呼ばれる.一般に, $\theta(t)$ の時間変化は搬送波周波数 f_c と比較して極めて小さい.したがって,s(t)の周波数スペクトルは搬送波周波数 f_c 付近に集中する.式(1)は三角関数の加法定理とオイラー公式により更に次のように展開できる.

$$s(t) = u_{\rm I}(t)\cos 2\pi f_c t - u_{\rm Q}(t)\sin 2\pi f_c t \tag{2}$$

$$= \Re \left\{ u(t) \cdot e^{j2\pi f_c t} \right\}$$
(3)

ここで, \Re{a} は a の実部を意味する. また, u(t) は, 次式のように表される.

$$u(t) = u_{\mathrm{I}}(t) + \mathbf{j} \cdot u_{\mathrm{Q}}(t) = e^{\mathbf{j}\theta(t)}$$
(4)

これを基底帯域信号または,複素包絡線と呼ばれる(図2参照).また, $u_{I}(t)$ 及び $u_{Q}(t)$ は,それぞれ同相(I:In-phase)成分,直交(Q:Quadrature)成分と呼ばれ, $u_{I}(t) = \cos \theta(t)$ 及び $u_{Q}(t) = \sin \theta(t)$ である.これらは,周波数スペクトルが0付近に集中した信号であるため,基底帯域信号と呼ばれる.式(2)から帯域信号は,図3の直交変調器を用いて生成できる,すなわち,式(3)から基底帯域信号を周波数シフトしたものであることが分かる.ここで, $u_{I}(t)$, $u_{Q}(t)$ は,メッセージから符号化されたシンボル点系列($u_{I,i}$, $u_{Q,i}$)からパルス整形により以下のように生成される.

$$u_{\rm I}(t) = \sum_{i=-\infty}^{\infty} u_{{\rm I},i} \cdot g(t-iT)$$
(5)

$$u_{\mathbf{Q}}(t) = \sum_{i=-\infty}^{\infty} u_{\mathbf{Q},i} \cdot g(t-iT)$$
(6)

ここで, g(t) は, パルス整形フィルタである.ここでは, もっとも簡単なフィルタとして, 次式のように時間 T の間一定値となる矩形パルスを用いる.

$$g(t) = \begin{cases} 1 & -\frac{T}{2} < t < \frac{T}{2} \\ 0 & \text{otherwise} \end{cases}$$

式 (5) と (6) から,基底帯域信号 u(t) は,その位相がシンボル周期 T で変化する信号であること が分かる.

図 4: シンボル点配置(送信信号)

3.2 変調回路

変調は,正弦波の振幅,周波数,位相を情報ビット(または,メッセージ)に応じて変化させる操作をいう.ここでは,無線通信で用いられる位相変調方式(phase shift keying; PSK)について説明する.なお, $u_{I}(t)$ 及び $u_{Q}(t)$ がそれぞれ複素包絡線の実部及び虚部であることから,以下では,図2のように複素平面(IQ平面)にシンボル点を表示する.これをコンステレーションと呼ぶ.

PSK は,変調信号により複素包絡線の位相を変化させる手法である.したがって,振幅変調 (ASK),直交振幅位相変調(QAM)と異なり振幅は変化しない.一般に,各シンボル点は 2π をシンボル点数に応じて等間隔で分割したものとなる.具体的には図4のように,2値PSK(BPSK)で π ,4値PSK(QPSK)では $\pi/2$ ごとに配置される.BPSKの場合は1ビットの情報となるため,2つ(= 2^1)のシンボル波形で情報を送信する.情報ビットが'1'であれば, $\theta = 0$,'0'であれば, $\theta = \pi$ のように情報ビットに応じて位相を変更する.式(1)からBPSKのシンボル波形は次式で表わされる.

$$s_{\rm bpsk}(t) = \begin{cases} \cos(2\pi f_c t + \pi) & \text{if } m = `0' \\ (2\pi f_c t + 0) & \text{if } m = (1, 1) \end{cases}$$
(7)

$$\int \cos(2\pi f_c t + 0) \quad \text{if } m = `1'$$
(8)

同様に,QPSKの場合は2ビットの情報を送信するため,4つ (= 2²)のシンボル波形が用いられる.情報ビットが '00' であれば, $\theta = \pi/4$, '01' であれば, $\theta = 3\pi/4$, '10' であれば, $\theta = 7\pi/4$, '11' であれば, $\theta = 5\pi/4$ のように情報ビットに応じて位相を変更する.このシンボル点配置はグレイコード (gray code) と呼ばれ,ビット誤り特性を改善するために用いられる.式 (1)から QPSKのシンボル波形は次式で表わされる.

$$s_{\rm qpsk}(t) = \begin{cases} \cos\left(2\pi f_c t + 1 \cdot \frac{\pi}{4}\right) & \text{if } m = `00' \\ \cos\left(2\pi f_c t + 3 \cdot \frac{\pi}{4}\right) & \text{if } m = `01' \\ \cos\left(2\pi f_c t + 5 \cdot \frac{\pi}{4}\right) & \text{if } m = `11' \\ \cos\left(2\pi f_c t + 7 \cdot \frac{\pi}{4}\right) & \text{if } m = `10' \end{cases}$$

図 5: 直交復調器

3.3 復調回路

復調回路では,搬送波を中心として変調された帯域信号を受信し,搬送波を取り除いて同相成分 と直交成分に分離する操作を行う.受信信号は次式のように表わされる.

$$r(t) = \alpha \cdot \cos\left(2\pi f_c t + \theta(t) + \phi\right) + z(t) \tag{9}$$

$$= \Re \left\{ h \cdot e^{\mathbf{j}\theta(t)} \cdot e^{\mathbf{j}2\pi f_c t} \right\} + z(t) \tag{10}$$

ここで, $\alpha \geq \phi$ は伝搬路による振幅減衰と位相回転を表わし, $h = \alpha e^{j\phi}$ を伝搬路応答と呼ぶ.また,帯域内の熱雑音 z(t) は,白色ガウス過程(平均0,分散 σ_z^2)に従うものと仮定する.これは, さらに, $z(t) = w_{\rm I}(t)\cos 2\pi f_c t - w_{\rm Q}(t)\cos 2\pi f_c t = \Re \left\{ w(t)e^{j2\pi f_c t} \right\}$ と考えることができ,この場合, w(t) は複素ガウス過程に従う基底帯域信号となる.

通常,送信された信号は,式(2)のようにシンボル点を搬送波の同相成分と直交成分に乗せて足し合わせた信号となるため,復調回路でも同様に搬送波の同相成分と直交成分を乗算することより,次式のように元の基底帯域信号が推定される(図5).

$$r_{I}(t) = r(t) \cdot 2\cos(2\pi f_{c}t)$$

= $\alpha \left[\cos\left(\theta(t) + \phi\right) + \cos(4\pi f_{c}t + \theta(t) + \phi)\right] + w_{I}(t) \left[\cos(4\pi f_{c}t) + 1\right] + w_{Q}(t)\sin(4\pi f_{c}t)$ (11)

$$r_Q(t) = r(t) \left(-2\sin(2\pi f_c t)\right) = \alpha \left[\sin\left(\theta(t) + \phi\right) - \sin(4\pi f_c t + \theta(t) + \phi)\right] + w_Q(t) \left[1 - \cos(4\pi f_c t)\right] - w_I(t)\sin(4\pi f_c t)$$
(12)

しかし,式(11)と(12)には搬送波周波数の2倍成分が含まれているため,積分器を用いて基底帯 域信号のみを取り出す.この操作により得られたシンボル点の推定値は次式のようになる.

$$\hat{u}_{\mathrm{I},i} = \frac{1}{T} \int_{iT}^{(i+1)T} r_I(t) dt = \alpha \cos\left(\theta_i + \phi\right) + \frac{1}{T} \int_{iT}^{(i+1)T} w_{\mathrm{I}}(t) dt$$
(13)

$$\hat{u}_{Q,i} = \frac{1}{T} \int_{iT}^{(i+1)T} r_Q(t) dt = \alpha \sin\left(\theta_i + \phi\right) + \frac{1}{T} \int_{iT}^{(i+1)T} w_Q(t) dt$$
(14)

式(4)と(13),(14)からシンボル点の推定値は次のように表わされる.

$$\hat{u}_i = \hat{u}_{\mathrm{I},i} + \mathrm{j}\hat{u}_{\mathrm{Q},i} = \alpha e^{\mathrm{j}\phi} \cdot e^{\mathrm{j}\theta_i} + \varepsilon_i = h \cdot u_i + \varepsilon_i \tag{15}$$

ここで, $\varepsilon_i = \frac{1}{T} \int_{iT}^{(i+1)T} w(t) dt$ である.実際には,式(15)に含まれている伝搬路特性 h を送受信 側で既知の信号を送受信することにより推定し信号の補償を行う.この操作を伝搬路等化と呼び,これにより基底帯域信号が正しく復元される.このシンボル点の符号を判定し,図4(b)のように,2ビット情報は $\hat{u}_{\mathrm{I},i} > 0$ $\hat{\mu}_{\mathrm{Q},i} > 0$ であれば,'00', $\hat{u}_{\mathrm{I},i} < 0$, $\hat{u}_{\mathrm{Q},i} > 0$ であれば,'01', $\hat{u}_{\mathrm{I},i} > 0$,

図 6: QPSK 変復調における信号波形(情報ビット列 '101101110001')

 $\hat{u}_{\mathrm{Q},i} < 0$ であれば, '10', $\hat{u}_{\mathrm{I},i} < 0$, $\hat{u}_{\mathrm{Q},i} < 0$ であれば, '11' のように 2 ビット情報を復号する.その後, パラレル・シリアル変換により元の情報ビット列が復元される.

図 6(a) に,情報ビット列 '101101110001' (12 ビット)を送信した場合の送信波形を示す.ここで,各シンボルは,1周期の正弦波で表わされた ($T = 1/f_c$).同様に,図 6(b) に受信側で信号処理過程で得られた信号波形を示す.シミュレーションの設定パラメータの詳細は表1に示す.

- 4 予習内容
 - 1. 基底帯域信号について説明せよ.
 - 2. QPSK 変調における図 3 の入力信号である基底帯域信号を作成する手順(情報ビット列から シンボル点へのマッピングする手順)を説明せよ.
 - 3. QPSK 復調における図 5 から出力された基底帯域信号から,情報ビット列を復元する手順を 説明せよ.

$\mathcal{X} \rightarrow \mathcal{I} \rightarrow $			
パラメータ	値		
搬送波周波数(f_c)	$100 \; [Hz]$		
シンボルレート(R)	$100 \; [\text{symbols/s}]$		
シンボル周期(T)	$0.01 \ [s]$		
サンプリング周波数 (F_s)	1 [kHz]		
サンプル周期(T _e)	1 [ms]		

表 1: シミュレーションパラメータ

5 実施内容

3章の理論を参考にして,図7のように QPSK 変復調回路をプログラムで実装しよう.図7(a) に,変調回路の信号処理のブロック図を示す.送信情報ビット列を二つのビット列にシリアル・パ ラレル変換を行い,3.2節で説明したように,ビットの組み合わせに応じて決定された位相により 符号系列(シンボル点系列)に変換する.このシンボル点系列を用いて,波形整形フィルタにより, パルス幅 T 秒の矩形パルスでシンボル波形を表現した基底帯域信号を生成する.その後,直交変調 器により帯域信号が合成される.また,図7(b)に復調回路における情報ビット列の復元の流れを 示す.ここで,直交復調器から得られたシンボル点の推定値は,符号判定により復号され,パラレ ル・シリアル変換により情報ビット列に復元される.ただし,このような同期検波を行うためには, シンボルのタイミングの検出と符号判定の前に伝搬路応答を推定し位相補償を行う必要がある.

以下の項目を実施し,レポートにまとめなさい(すべて個人ワーク).各自,自分の開発環境で 動作するプログラミング言語を用いること.ただし,表1にミュレーションパラメータを示す.

- QPSK 変調回路をプログラムで作成せよ、情報ビット列 '101101110001'(12 ビット)を用 いて変調を行った結果をグラフに提示せよ(図 6(a)の結果となることを確認する)(図面を レポートに貼り付けること).
- 2. QPSK 復調回路をプログラムで作成せよ.上記 1 で変調した信号を復調した結果を提示せよ(図 6(b)の結果となることを確認する)(ソースコード及び図面をレポートに貼り付けること).
- 3. 式 (9) のように,受信信号には熱雑音(白色ガウス過程)が加わり,符号判定が誤る原因となる.熱雑音の影響は,次式のように信号対雑音電力比(signal-to-noise power ratio; SNR)で表される.

$$SNR = \frac{\alpha^2}{2\sigma_z^2} \tag{16}$$

さらに,ビット当たり信号対雑音電力比 (SNR per bit) γ_b^2 は次のように表される.

$$\gamma_b = \text{SNR} \cdot \frac{1}{2} \cdot \frac{F_s/2}{R} \tag{17}$$

ここで, QPSK は 2 ビット伝送であるため 1/2 倍となり, $\frac{F_s/2}{R}$ は積分器におけるシンボル内 サンプル点数の平均から得られる雑音電力低減効果を表す.図 8 に SNR = 0 [dB] ($\gamma_b = 4$

 $^{^{2}\}gamma_{b}=rac{E_{b}}{N_{0}}$. ここで, E_{b} はビット当たりのエネルギー, N_{0} は雑音電力スペクトル密度である.

(a) 送信側

(b) 受信側

図 7: QPSK における変復調信号処理

[dB])のときの受信波形とシンボル点配置例を示す.QPSK におけるビット誤り率(bit error rate; BER)は γ_b の関数として次式のように表される[3].

$$P_b(\gamma_b) = Q\left(\sqrt{2\gamma_b}\right) \tag{18}$$

ここで, Q 関数は, $Q(x) = \frac{1}{\sqrt{2\pi}} \int_x^\infty e^{-\frac{t^2}{2}} dt$ である.図9に, QPSKのBER 特性をプロットした結果を示す.

式 (9) で, 伝搬路応答 h = 1 ($\alpha = 1$, $\phi = 0$) であるとし, 送信信号(帯域信号)に熱雑音 が付加された受信信号を生成せよ. SNR を変化させながら測定した BER を表 2 に記入し理 論値と類似の結果が得られることを確認し,結果について考察せよ.ここで,ガウス乱数発 生器を用いて z(t) を生成し,熱雑音の電力 ($\sigma_z^2 = \frac{\alpha^2}{2\text{SNR}} = \frac{\alpha^2 F_s}{8R} \frac{1}{\gamma}$)を調整して, SNR を変 更するようにプログラムを記述すること.情報ビット数は, 20,000 bits 以上で評価すること.

4. 受信信号は,式(9)に示すように伝搬路応答hにより,減衰(α)及び位相回転(ϕ)が発生 する.この場合,図10(a)のようにシンボル点配置が回転してしまうため,判定に誤りが発生 する.無線通信システムでは,無線伝搬路による影響を除去するために,既知の信号(プリ アンブル)をデータに付加したデータフレームを送信し,伝搬路応答を推定する.受信シン ボル点に推定された伝搬路応答を除算することによりシンボル点の補償を行う(\hat{u}_i/\hat{h}).こ れにより,図10(b)のようにシンボル点配置となる.ここで,伝搬路応答の推定は,送信プ

図 8: 熱雑音による影響 (SNR = 0 [dB], $\gamma_b = 4$ [dB])

リアンブル ($u_{\text{pre},i}$) と受信されたプリアンブル間 ($\hat{u}_{\text{pre},i}$)の相互相関から以下のように求められる.

$$\hat{h} = \frac{1}{N_{\rm pre}} \sum_{i=1}^{N_{\rm pre}} \hat{u}_{{\rm pre},i} * u_{{\rm pre},i}^* \tag{19}$$

補償後のシンボル点配置例を図 10(b) に示す.

data1.csv(配布予定)には,表1の条件でQPSK 変調された信号(帯域信号)が保存されている.この信号を復調してデータビット列を復元せよ.ただし,データは,図11のようにプリアンブル16シンボル(32ビット)とデータ32シンボル(64ビット)のフレーム構造となっている.プリアンブルの情報は,data1.csvを参照すること.

5. data2.csv(配布予定)には,上記4と同様なデータフレームを二つのアンテナで2回ずつ受信した信号(帯域信号)が保存されている.ここで,各アンテナの各受信信号には独立同一分布(independent identical distribution; iid)の白色ガウス雑音が付加され,多重波フェージングにより各アンテナの受信電力は独立であると仮定された.つまり,同一アンテナで受信された信号のSNRは同じであるが,異なるアンテナにおけるSNRは異なっている.この場合,最適な信号合成法について調査・検討し,データビット列を復元せよ.1つのデータフレームのみを用いるより4つのデータフレームを合成することで得られる利得について考察せよ.

表:	2: I	2.	ット	誤)	率

$\gamma_b \; [\mathrm{dB}]$	理論値	測定値
-6	2.39×10^{-1}	
-3	$1.58 imes 10^{-1}$	
0	7.87×10^{-2}	
3	2.29×10^{-2}	
6	2.39×10^{-3}	
9	$3.36 imes 10^{-5}$	

図 9: QPSK の BER 特性

図 10: シンボル点配置例 (10,000 シンボル) ($\alpha = 0.4$, $\phi = -46.5^{\circ}$, SNR = 0 [dB])

参考文献

- [1] 三瓶政一,"ディジタルワイヤレス伝送技術," ピアソン・エデュケーション, 2002年.
- [2] 知識の森,ディジタル変復調(4 群 1 編 4 章),電子情報通信学会,http://www.ieice-hbkb.org/files/04/04gun_01hen_04.pdf
- [3] Andrea Goldsmith, Wireless Communications, 1st Ed., Cambridge University Press, 2005

プリアンブル	データ
(16シンボル)	(32シンボル)

図 11: データフレーム構造