Channel Model for Outdoor Open Area Access Scenarios

Date: 2016-03-15

Authors:

Name	Affiliations	Address	Phone	email
Minseok Kim	Niigata		+81-25-262-	mskim@ieee.org
	University		7478	
Kento Umeki	Niigata			
	University			
Tatsuki Iwata	Niigata			
	University			
Shigenobu	Niigata		+81-25-262-	shinsasaki@ieee.org
Sasaki	University		6737	
Karma	Tokyo Institute			
Wangchuk	of Technology			
Jun-ichi Takada	Tokyo Institute		+81-3-5734-	takada@ide.titech.ac.jp
	of Technology		3288	

Abstract

• In this contribution, the channel measurement results in an outdoor environment in Niigata university campus at an mm-wave band of 58.5 GHz assuming an open area outdoor hotspot access scenario will be introduced.

Outline

- Background
- Channel measurement
- Ray tracing simulation
- Mechanism identification results
- Channel modeling
- Summary

Background

• IEEE802.11ay

- Multi-Gb/s data throughput for WLANs
- In May 2015, the IEEE802.11 TGay group started for development of the new standard enhancing the efficiency and performance of existing IEEE 802.11ad specification providing WLANs connectivity in 60 GHz band
- Increase the data transmission rates defined in IEEE 802.11ad from 7 Gbps up to 30 Gbps for growing demands of new broadband indoor and "*outdoor applications*"

Channel Models

• Indoor scenarios:

• Extension based on existing IEEE802.11ad model [3]

• Outdoor scenarios:

- Extensive ray-tracing simulations and the results of new measurements are needed
- Existing MiWEBA model [1]

• Our contribution

- Measurement campaign in an outdoor open area hot spot access scenario
- Investigation of dominant propagation mechanisms
- Channel model parameter extraction (Q-D model)

Measurement Campaign

Mm-Wave MIMO Channel Sounder

• Hardware configuration [6]

- Baseband: MIMO software defined radio testbed
- RF: commercial product (V60TXWG1/V60RXWG1, VubIQ)
- Feature
 - Double directional measurement : rotating high gain horn antennas
 - Full polarimetric measurement: dual-polar 2x2MIMO

• Sounding signal : Newman phase multi-tone

Channel Sounder Specifications

Submission

Channel Sounder Specifications (cont'd)

Full polarimetric double-directional measurement

Tx Antenna	24dBi Pyramidal Horn
Rx Antenna	15dBi Pyramidal Horn
Tx Antenna Rotation	Az:-180~+180, El:-24~+24 Step:12 deg.
Rx Antenna Rotation	Az:-180~+180, El:-30~+30 Step:30 deg.

Submission

-5 -10

-15

-20

Measurement Campaign

Map data @Google, ZENRIN

Data Processing

• Double directional channel impulse response

$$h_{\rm qp}(\tau,\vartheta_i,\varphi_j,\vartheta_m',\varphi_n') = \mathcal{F}^{-1} \{ H_{\rm qp}(f,\vartheta_i,\varphi_j,\vartheta_m',\varphi_n') \} \qquad \begin{array}{c} {\rm Polarization} \\ {\rm p} \in \{\vartheta,\varphi\} \\ {\rm q} \in \{\vartheta,\varphi\} \end{array}$$

• Double directional angle delay power spectrum (DDADPS)

$$P_{\rm qp}(\tau,\vartheta_i,\varphi_j,\vartheta_m',\varphi_n') = \left|h_{\rm qp}(\tau,\vartheta_i,\varphi_j,\vartheta_m',\varphi_n')\right|^2$$

Data Processing (cont'd)

• Synthetic spectrum (omni-directional)

Angular power spectrum APS_{qp} $(\vartheta_i, \varphi_j) = \frac{1}{\zeta_{Tx}} \sum_{\tau,m,n} P_{qp}(\tau, \vartheta_i, \varphi_j, \vartheta'_m, \varphi'_n)$ Power delay profile PDP_{qp} $(\tau) = \frac{1}{\zeta_{Tx}\zeta_{Rx}} \sum_{i,j,m,n} P_{qp}(\tau, \vartheta_i, \varphi_j, \vartheta'_m, \varphi'_n)$ Gain correction

Polarization combination

$$APS_{\Sigma}(\vartheta_{i},\varphi_{i}) = \frac{1}{2} \sum_{p \in \{\vartheta,\varphi\}} \sum_{q \in \{\vartheta,\varphi\}} APS_{qp}(\vartheta_{i},\varphi_{j})$$
$$PDP_{\Sigma}(\tau) = \frac{1}{2} \sum_{p \in \{\vartheta,\varphi\}} \sum_{q \in \{\vartheta,\varphi\}} PDP_{qp}(\tau)$$

Propagation Mechanism (MS_pos1)

Propagation Mechanism (MS_pos2)

Propagation Mechanism (MS_pos3)

Scattering

Interacting Obj.	Lamppost	Interacting Obj.	Tree	Interacting Obj.	Weather Shed
Path gain	-112.6dB	Path gain	-115.5dB	Path gain	-115.5dB
Difference from direct path	-17.3dB	Direct path from direct path	-17.7dB	Direct path from direct path	-17.7dB
Scattering Single-bounce Double-bounce Diffraction -17.7~-17.3 dB -16~-10 dB -19~-15 dB -17.25 dB					

Propagation Mechanism Summary

Propagation Mechanism	MS Position	Path Gain [dB]	Difference from direct path [dB]	Average [dB]	XPR(TxV)	XPR(TxH)
Single-bounce Reflection	MS_pos1	-105.6	10.3	13.86	6.39	2.5
	MS_pos2	-113.5	15.7		8.31	6.98
	MS_pos2	-113.7	15.9		8.36	8.91
	MS_pos3	-108	10.25		13.85	14.36
Double-bounce Reflection	MS_pos1	-110.4	15.1	18.49	10.16	6.41
	MS_pos2	-117.6	19.8		4.54	3.26
	MS_pos2	-116.3	18.5		4.29	6.87
	MS_pos3	-117	19.25		3.27	2.56
Diffraction	MS_pos3	-115	17.25	17.25	0.45	10.14
Scattering (Lamppost)	MS_pos2	-115.5	17.7		7.13	6.65
Scattering (Tree)	MS_pos1	-112.6	17.3	18.03	13.86	13.94
Scattering (Weather Shed)	MS_pos2	-116.6	18.8		1.64	8.09
Scattering (Weather Shed)	MS_pos2	-115.5	17.7		6.57	8.47
Scattering (Weather Shed)	MS_pos3	-116.2	18.45		6.45	0.8

Strong single-bounce reflection from nearby buildings should be deterministically modeled

Channel Modeling

IEEE802.11ay Outdoor Channel Model

- Quasi-deterministic model based on MiWEBA [2]
- Deterministic components
 - LoS, Ground reflection, Near-wall reflection
 - Determined by the location of Tx and Rx in the surrounding environment
- Random components
 - Reflection from far-away static objects and random objects
 - Statistically modeled

Channel Parameters

Deterministic components

- Loss is calculated by Friis equation and Fresnel reflection equation
- AoA (Angle-of-arrival), AoD (Angle-of-departure) and delay are determined by the location of Tx and Rx D-Ray

Random components

- No Clusters, N_c
- Cluster arrival rate, λ
- Cluster power-decay constant, γ
- Ray K factor
- AoA and AoD

Developed Channel Models

CM1

- Existing open area model
- D-Ray: LoS and GR

CM2

- Reflection from nearby buildings are taken into account as D-Ray
- D-Ray: LoS, GR and single-bounce reflections from near walls

Developed Channel Models

• Statistical parameters of R-Ray were extracted from ray tracing simulations

Delay Domain Parameters

Delay Domain Parameters (Cont'd)

• Impulse response

$$h(\tau) = \sum_{k=1}^{N_c} \beta_k e^{j\theta_k} \delta(t - \tau_k)$$

 τ_k : arrival time of the *k*-th cluster measured from the arrival time of the LOS ray β_k and θ_k : gain and phase of the *k*-th cluster

• Average gain

$$\overline{\beta_k^2} \equiv \overline{\beta^2(\tau_k)} = \overline{\beta^2(0)}e^{-\tau_k/\gamma}$$

where $\overline{\beta^2(0)} = \beta_{\text{LoS}}^2/K$

 β_{LoS}^2 : power gain of the LOS ray *K*: maximal ratio of LOS to NLOS component γ : power-decay constant

(Cluster Angle)

• Azimuth angle

March 2016

- Uniform distribution
- Elevation angle
 - Uniform distribution
 - Depends on Tx and Rx position
 - Normalized elevation angle

$$\hat{\theta} = \frac{\theta - \theta_{\rm D0}}{|\theta_{\rm D0} - \theta_{\rm G0}|}$$

D0: Direct path G0: Ground Reflection

MS position index

Angular Domain Parameters (Cluster Angle)

Summary of R-Ray Parameters

			CM1	CM2	IEEE802.11ay[4]	
	No. Clusters, N_c		3	3	3	
lay	Cluster arr	rival rate, λ	0.03 ns^{-1}	0.03 ns ⁻¹	0.05 ns^{-1}	
power-d	power-deca	y constant, γ	34 ns	45 ns	15 ns	
	K factor		9 dB	12.6 dB	6 dB	
Angle	AoA	Elevation	Norm. Elevation U[-0.52 : 0.11]	Norm. Elevation U[-0.5 : 0.1]	U[-20 : 20°]	
		Azimuth	U[-100:100°]	U[-110:110°]	U[-180:180°]	
	AoD	Elevation	Norm. Elevation U[-0.29 : 0.68]	Norm. Elevation U[-0.22 :0.71]	U[-20 : 20°]	
		Azimuth	U[-100:100°]	U[-110:110°]	U[-180:180°]	

Summary

• The dominant propagation mechanism in an outdoor open area environment

Reflection: single-bounce (-16~-10dB), double-bounce (-19~-15 dB) Diffraction (-17.25 dB)

- Statistical parameters of R-Ray from ray tracing simulation
 - New model (CM2) considers the reflection from the nearby walls as D-Ray

• Future works

- Detail investigation of the objects causing non-specular reflection
- Further measurements and channel modeling

References

[1] MiWEBA, FP7 ICT-2013-EU-Japan, http://www.miweba.eu

[2] METIS, FP7 ICT-317669-METIS, http://www.metis2020.eu

- [3] "Channel Models for 60 GHz WLAN Systems," *IEEE Document* 802.11-09/0334r8, May 2010.
- [4] "Channel Models for IEEE 802.11ay," IEEE Document 802.11-15/1150r2, Sept. 2015.
- [5] Minseok Kim, Karma Wangchuk, Shigenobu Sasaki, Kazuhiko Fukawa, Jun-ichi Takada, "Development of Low Cost Mm-Wave Radio Channel Sounder and Phase Noise Calibration Scheme," COST Action IC1004(EU), TD(15)12036, Jan. 2015 (Dublin, Ireland).
- [6] Minseok Kim, Kento Umeki, Karma Wangchuk, Jun-ichi Takada, Shigenobu Sasaki, "Polarimetric Mm-Wave Channel Measurement and Characterization in a Small Office," Proc. *PIMRC 2015*, Aug. 2015.