B-1-11

市街地マクロセル環境におけるSub-6 GHz帯 伝搬チャネル特性

Sub-6 GHz Propagation Channel Characteristics in an Urban Macrocell Environment

2023年3月7日 (火)

電子情報通信学会 総合大会

○高橋 莉玖,塚田 響,鈴木 直也,日野 一世,金 ミンソク

新潟大学大学院 自然科学研究科

本報告は総務省の委託研究開発 (JPJ000254) により実施した成果を含みます

研究背景

■ 無線通信技術の発展と利用シナリオの多様化

■ Beyond 5G, 車の自動走行, IoTなど

チャネルモデルに対する要求の高まり

□ 新規無線通信システム開発のためのチャネルモデル

□ 想定される利用形態に対して高精度なチャネル特性の再現

⇒ サイト固有の特徴をモデルに適用する手法の検討^[1]

■目的

□実環境でのチャネル測定データの取得・解析

モデルへ適用するためのパラメータ導出

 ^[1] 高田潤一・Nopphon Keerativoranan・林 高弘・金 ミンソク・吉敷由起子・岡村 航・齋藤健太郎・今井哲朗・廣瀬 幸・沢田浩和・松村 武, サイバーフィジカル融合によるワイヤレスエミュレータのための電波伝搬モデル, 信学技報 SRW2021-23, 2021年

■チャネルサウンダ

〕 測定にはSub-6 GHz (2.4 GHz/4.8 GHz)
チャネルサウンダ^[2]を使用

パラメータ		2.4 GHz	4.8 GHz		
中心周波数		2.462 GHz 4.85001 G			
信号带域幅		40 MHz	99.9 MHz		
サウンディング信号		マルチトーン			
サブキャリア数		200	510		
サブキャリア間隔		195 kHz			
遅延分解能		25 ns	10 ns		
最大遅延		5.12 us			
送信電力		23 dBm/Ant.	26 dBm/Ant.		
HPBW	UCA	Az: 75°, El: 70°			
	ULA	Az: 90°			
Gain	UCA	6.5 dBi			
	ULA	4 dBi			

システム諸元

[2] 金ミンソク, 塚田響, 高橋莉玖, 鈴木直也, 日野一世, 沢田弘和, 松村 武, "Sub-6 GHz帯双角度チャネルサウンダの開発及び 市街地環境におけるチャネル測定結果," 信学技報, AP2022-225, 2023年2月

測定エリア

■横浜市の市街地において3エリアの走行測定を実施

測定エリア	走行ルート	アンテナ		
		基地局 (BS	5)	移動局 (MS)
横浜第一有楽ビル (Urban Macro-cell)	合計3ルート (R1, R2, R3)	8素子ULA 向き : 北 高さ : 33 m		8素子UCA 高さ:2.7 m
NTT横浜山下ビル (Urban Macro-cell)	合計2ルート (R4, R5)	8素子ULA 向き : 南東 高さ : 34 m		
ワールドポーターズ (Urban Micro-cell)	1ルート (R6) ※4.8 GHzのみ	8素子UCA 高さ:3 m		走行速度:20 km/h以下 測定間隔:0.5 s

測定データの処理

■ 双角度遅延電力スペクトル (DDADPS) 送受信側においてビームフォーミングを行いアンテナパターンを排除した 双角度遅延電力スペクトルを得る

> サブキャリアの インデックス 送受信方位角 MIMO伝達関数行列 $G[k, \varphi_T, \varphi_R] = C_R^{-1} \mathbf{A}_R^H[k, \varphi_R] \mathbf{H}[k] \mathbf{A}_T^*[k, \varphi_T] C_T^{-1}$ 双角度伝達関数 $G[k, \varphi_T, \varphi_R] \xrightarrow{\mathcal{F}^{-1}} g[n, \varphi_T, \varphi_R]$ 双角度伝達関数 双角度インパルス応答 $P[n, \varphi_T, \varphi_R] = |g[n, \varphi_T, \varphi_R]|^2$ 双角度遅延電力スペクトル

(DDADPS)

送受信アンテナ $\mathbf{A}_T[k, \varphi_T] \in \mathbb{C}^{8 \times 1}$ パターン $\mathbf{A}_R[k, \varphi_R] \in \mathbb{C}^{8 \times 1}$ アンテナ利得 $C_T = \mathbf{A}_T^H[k, \varphi_T] \mathbf{A}_T[k, \varphi_T]$ 補償係数 $C_R = \mathbf{A}_R^H[k, \varphi_R] \mathbf{A}_R[k, \varphi_R]$

測定データの可視化・LSP算出

Path Loss 特性

横浜中華街周辺エリア (UMa相当)

Path Loss 特性

ルートAにおけるLSP

[3] 3GPP TR 38.901 version 16.1.0 Release 16, "Study on channel model for frequencies from 0.5 to 100 GHz", ETSI TR 138 901 V16.1.0 Nov. 2020.

ルートBにおけるLSP

ルートBにおける遅延・角度広がりの分布

[4] ITU-R, Recommendation ITU-R P.1411-11, Sep. 2021.

まとめ

■目的

□ 実環境でのチャネル測定データの取得・解析およびモデルパラメータ導出

■ 実施内容

□ Sub-6GHz帯の市街地伝搬特性を測定

□ 測定結果よりLSPを導出

■今後の課題

□ 他のエリアにおいても引き続き詳細に検討