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Direction-of-arrival estimation

Mats Viberg

16.1. Signal models and problem formulation

The purpose of this chapter of the book is to review the area of direction-of-arrival
(DOA) estimation, with special focus on wireless communication systems. Such
information is useful for understanding the propagation environment, and gives
empirical evidence for theoretical propagation models. Both detailed modeling in-
cluding resolution of all propagation paths, and statistical models of scatter clus-
ters can be of interest. Both these cases will be considered herein. The chapter is
organized as follows: first the basic signal models are motivated and the estima-
tion problems are introduced in Section 16.1. Then, in Section 16.2 a brief intro-
duction to the standard DOA estimation problem is given. Section 16.3 considers
estimation in case of spatially spread sources (i.e., unresolved scatterers). Finally,
Section 16.4 applies the DOA estimation methods to parametric modeling of the
wireless channel.

16.1.1. Spatial signal modeling

A traditional wireless communication system has one transmit and one receive
antenna. To enable estimation of the direction to the transmitter, the received sig-
nal must be sampled at several spatial locations. The different elements of such
an antenna array will all measure the same signal, but with different time delays
depending on the DOA. In a realistic scenario, these time delays are much smaller
than the reciprocal of the signal bandwidth, and can therefore be considered as
phase shifts (see [1] for more details regarding this narrowband assumption). Let
s(t) be the complex baseband equivalent of the electromagnetic field at a refer-
ence position, due to a far-field transmitter in the direction θ. The vector-valued
received signal at the positions of m antenna elements can then be expressed as

x(t) =


x1(t)
x2(t)

...
xm(t)

 =


e− jωcτ1(θ)

e− jωcτ2(θ)
...

e− jωcτm(θ)

 s(t) = a(θ)s(t), (16.1)
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where ωc is the carrier frequency and τk(θ) denotes the propagation delay from
the reference to the kth element. The vector a(θ) is termed the steering vector of
the array. Assuming linear receivers with flat frequency responses over the signal
bandwidth, the down-converted antenna outputs are proportional to x(t). Due
to mutual coupling and other effects, the individual antenna elements may have
θ-dependent gain and phase characteristics, that add to the phase-shifts due to
geometry present in (16.1). As long as the receiver dynamics can be ignored, the
antenna outputs can still be expressed as x(t) = a(θ)s(t), but the functional form
of the steering vector would have to be adjusted accordingly. A structure of special
interest arises if the antenna elements are nondirectional and uniformly spaced
along a straight line. The steering vector for such a uniform linear array (ULA)
has the form

aULA(θ) = [
1, e jφ, . . . , e j(m−1)φ]T , (16.2)

where φ = kl sin θ is called the electrical angle, k = ωc/c is the wave number, ωc

is the carrier frequency, c denotes the speed of propagation, and l is the element
separation. The DOA θ is measured relative to the array normal. To uniquely de-
termine θ, it is clear that |φ| ≤ π must hold for all θ. In case the whole field of
view is of interest, this leads to l ≤ π/k = λ/2, where λ is the wavelength. A ULA
with maximum element separation l = λ/2 is often termed a standard ULA, and is
often used for comparison.

Due to linearity, the extension of (16.1) to the case of multiple signals is
straightforward. Thus, assume there are d far-field emitters, transmitting the base-
band signal waveforms sk(t), k = 1, 2, . . . ,d. The array output is then modeled by
the familiar equation

x(t) =
d∑

k=1

a
(
θk

)
sk(t) + n(t), (16.3)

where we have also included an additive noise term n(t). In matrix form, the above
reads

x(t) = A(θ)s(t) + n(t), (16.4)

where A(θ) = [a(θ1), . . . , a(θd)] is the steering matrix, θ = [θ1, . . . , θd]T contains
the signal parameters, and s(t) = [s1(t), . . . , sd(t)]T is composed of the signal wave-
forms. In the “standard” DOA estimation literature, no information regarding s(t)
is assumed to be available. The two prevalent models for the signal waveforms are
that they are either regarded as deterministic parameters to be estimated, or they
are drawn from a d-variate complex Gaussian distribution with zero mean and
covariance matrix P = E[s(t)s∗(t)]. To enable reliable estimation of the DOA pa-
rameters, information about the spatial covariance matrix of the noise is neces-
sary. For simplicity, it is assumed that a prewhitening has been performed, so that



Mats Viberg 323

E[n(t)n∗(t)] = σ2I holds. Assuming stochastic signals, the spatial covariance of
the array output reads

R = E
[

x(t)x∗(t)
] = A(θ)PA∗(θ) + σ2I. (16.5)

The array output is assumed to be sampled at N discrete time instants, say
t1, t2, . . . , tN . The standard DOA estimation problem is then to determine the DOA
parameters θk, k = 1, 2, . . . ,d based on the measurements x(tn), n = 1, 2, . . . ,N .
Included in this problem is to estimate the number of (significant) signal compo-
nents, d. Most DOA estimation methods use the measurements only to form the
sample covariance matrix

R̂ = 1
N

N∑
n=1

x(tn)x∗(tn). (16.6)

Under fairly mild conditions on the signals and noise, it holds that R̂ → R with
probability 1 as N → ∞. Thus, provided the DOA estimation method gives correct
estimates when R is used, we can expect good performance as long as N is “large
enough.”

The above model can be extended in various ways, for example, by taking both
azimuth and elevation into account, considering near-field sources, or including
effects of polarization. Of most importance in a mobile communication system,
however, is the concept of multipath propagation.

16.1.2. Multipath propagation

In microwave communication, it is well known that a significant proportion of the
signal energy is scattered via several propagation paths. Indeed, in many cases there
is no line-of-sight (LOS) between the mobile and base station, implying that all of
the energy is due to scattering. In the Jakes model [2], the scatterers are spread
out evenly on a circle surrounding the mobile, but also other models have been
proposed. For closely spaced scatterers, the propagation delays are similar, and the
received signal components differ only in a possibly time-varying, complex scaling.
The wideband case, where time delays need to be accounted for, is considered in
Section 16.4. Adopting the spatial signal model (16.3), we have sk(t) = gk(t)s(t),
k = 1, . . . ,d, where gk(t) are termed the reflection (or scattering) coefficients. The
array output is thus modeled as

x(t) =
 d∑
k=1

gk(t)a
(
θk(t)

) s(t) + n(t) = v(t)s(t) + n(t). (16.7)

The complex m-vector v(t) is usually referred to as the spatial signature of the
transmitter. Since the scatterers are close, it is not practical to resolve all individual
propagation paths. We therefore refer to this as a spatially spread source, as op-
posed to the standard case of point sources. In a time-varying scenario, the scatter
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coefficients gk(t) are usually time-varying at a significantly higher rate than the
DOAs θk(t) [3], and the latter may therefore be considered stationary over a short
data collection interval. Both the scatterers and DOAs are modeled as random
variables, with E[gk(t)] = 0, E[gk(t)g∗l (t)] = σ2

g δk,l, E[gk(t)gl(t)] = 0, E[θk] = θ0,

and E[(θk − θ0)2] = σ2
θ . The source is thus characterized by the mean (or nominal

DOA) θ0 and the standard deviation (or spreading factor) σθ . The scatter coeffi-
cients are usually normalized so that σ2

g = 1/d, by absorbing the power into s(t).
Under the stated assumptions, the spatial array covariance matrix takes the form

Rs = E
[

x(t)x∗(t)
] = P

∫
θ

a(θ)a∗(θ)pθ(θ)dθ + σ2I, (16.8)

where pθ(θ) is the probability density function (PDF) of the DOAs. The number
of incoming rays, d, is usually assumed large, implying that x(t) is well modeled
as a zero-mean Gaussian random vector. Thus, ignoring the temporal correlation
structure, Rs captures all information regarding the incoming energy. To get a re-
liable estimate of Rs, one needs to see several realizations of the random propa-
gation paths, all taken from the same underlying distribution. Thus, in this case
the data x(t) should be observed slowly enough to enable each gk(t) and θk(t) to
vary significantly between samples. In the literature, the scatter coefficients are of-
ten modeled as temporally white. Given data x(tn), n = 1, . . . ,N , the usual sample
covariance matrix

R̂ = 1
N

N∑
n=1

x
(
tn
)

x∗(tn) (16.9)

is taken as the estimate of Rs. The task is now to infer the characteristics of the
scattering environment based on R̂. Usually, it is sufficient to determine θ0 and σθ .

16.2. DOA estimation for point sources

This section presents methods for the case where the transmitters are resolvable,
that is, they are modeled as point sources. This is the “standard” DOA estimation
problem, which by now can be considered a mature research area. The following
outlines some of the more influential methods. More details are available in, for
example, [4, 5].

16.2.1. Beamforming techniques

The duality between uniform sampling in space (ULA) and time have lead re-
searchers to apply methods from one domain to the other. The spatial Fourier
transform of a single data snapshot x(tn) is given by

x̃
(
tn,φ

) =
m−1∑
k=0

xk
(
tn
)
e− jkφ. (16.10)
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With aULA(θ) given by (16.2) we can express this as the inner product

x̃
(
tn, θ

) = a∗
ULA(θ)x

(
tn
)
. (16.11)

The spatial periodogram of x(tn) is then simply |x̃(tn, θ)|2. If no temporal corre-
lation is assumed, it is natural to average the instantaneous spatial spectra to form
the final estimate. When applying this to a general array, for which ‖a(θ)‖ may
depend on θ, it is useful to introduce a normalization of (16.11). The resulting
spectral estimate, termed conventional beamforming, takes the form

PBF(θ) = 1
N

N∑
n=1

∣∣a∗(θ)x
(
tn
)∣∣2

a∗(θ)a(θ)
. (16.12)

Expanding the square |a∗(θ)x(tn)|2 = a∗(θ)x(tn)x∗(tn)a(θ) and inserting (16.6)
leads to

PBF(θ) = a∗(θ)R̂a(θ)
a∗(θ)a(θ)

. (16.13)

The locations θ̂k of the d highest peaks of PBF(θ) are taken as the beamforming
DOA estimates. The averaging implies that PBF(θ) has a much reduced variance as
compared to the classical periodogram for large N , but similar to the latter it has a
limited resolution. In case of a ULA, the Rayleigh resolution expressed in electrical
angle is ∆φ = 2π/m, which for large m translates to ∆θ ≈ 2π/(klm).

To improve the resolution of the conventional beamformer, Capon [6] advo-
cated the use of adaptive beamforming. Although the original derivation is differ-
ent, the following interpretation has become popular:

min
w

w∗R̂w subject to w∗a(θ) = 1. (16.14)

The energy w∗R̂w of the beamformer output w∗x(tn) is to be minimized, while
keeping a unit gain in the “look direction” θ. The optimizing beamforming weights
are easily shown to be

wCAP = R̂−1a(θ)

a∗(θ)R̂−1a(θ)
, (16.15)

which when inserted into w∗R̂w, leads to the Capon spectral estimate

PCAP(θ) = 1

a∗(θ)R̂−1a(θ)
. (16.16)

In contrast to the conventional beamformer, the resolution of (16.16) improves
with the SNR (signal-to-noise ratio) [7]. It is therefore preferable, at least in high-
SNR scenarios. However, the resolution does not improve for increasing N . The
Capon DOA estimates, which are the peak locations of PCAP(θ), therefore still fail
to take full advantage of data model (16.4).
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16.2.2. Subspace methods

In the late seventies, a new class of spectral-based estimators were introduced.
These have their roots in principal component analysis, and are based on geo-
metrical properties of the array covariance matrix. It is clear from (16.5) that any
vector that is orthogonal to A(θ) is an eigenvector of R with corresponding eigen-
value σ2. The remaining eigenvectors are all in the range space of A(θ) (provided
m > d and P is full rank), and are therefore termed signal eigenvectors. The eigen-
decomposition of R (16.5) is partitioned into a signal and a noise subspace as

R =
m∑
k=1

λkeke∗
k = EsΛsE

∗
s + EnΛnE∗

n , (16.17)

where λ1 ≥ · · · ≥ λd > λd+1 = · · · = λm = σ2, Es = [e1, . . . , ed], En =
[ed+1, . . . , em], and Λn = σ2I. The signal eigenvectors in Es span the range space
of A(θ), which is termed the signal subspace. For the noise eigenvectors we have
instead En ⊥ A(θ). These relations constitute the fundament for subspace meth-
ods for DOA estimation. In passing, we note that the number of signals d can easily
be determined from (estimates of) the eigenvalues, either as the number of “signif-
icant” eigenvalues or by determining the multiplicity of the minimum eigenvalue
[8, 9]. The MUSIC (multiple signal classification) algorithm [10, 11] exploits the
orthogonality relation a∗(θk)En = 0, for k = 1, . . . ,d. Provided the array is free of
ambiguities, there are no false solutions to this equation [12, 13]. The noise sub-
space matrix is estimated from the eigendecomposition of the sample covariance

R̂ = ÊsΛ̂sÊ
∗
s + ÊnΛ̂nÊ∗

n . (16.18)

Using the estimated noise subspace, the so-called MUSIC pseudospectrum is then
defined as

PMU(θ) = a∗(θ)a(θ)

a∗(θ)ÊnÊ∗
n a(θ)

. (16.19)

This is not a spectrum in the usual sense, since it is in fact dimensionless. Yet,
for large enough N and/or SNR, PMU(θ) exhibits high peaks near the true DOAs
θ1, . . . , θd. The MUSIC algorithm calculates the DOA estimates by computing
PMU(θ) at a fine grid (using FFT with zero-padding in the case of a ULA), and
then locating the d largest local maxima. If desired, the estimates can be refined by
using a local search.

To illustrate the performance of the different spectral-based estimators, N =
500 snapshots of x(tn) are generated according to the model (16.4). The array
is a standard ULA of m = 6 sensors, and d = 3 emitters are located at θ =
[0◦, 5◦, 20◦]T . The waveforms are assumed uncorrelated and of equal power and
the SNR is 10 dB. Both the signal waveforms and the noise are realizations of
white Gaussian random processes. The conventional and Capon spatial spectra are
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Figure 16.1. Spatial spectrum estimates using conventional beamforming, Capon’s beamformer, and
MUSIC. Standard ULA of m = 6 elements. True DOAs {0◦, 5◦, 20◦}, SNR = 10 dB, N = 500.

displayed in Figure 16.1, along with the MUSIC pseudospectrum, all normalized
to have maximum value one. The conventional beamformer shows just one peak
around 3.4◦, whereas the Capon spectrum exhibits two peaks at 2.4◦ and 19.2◦.
In contrast, the MUSIC pseudospectrum resolves all three signals with peaks at
−0.5◦, 5.9◦ and 19.5◦. This is of course just one realization using random signals,
but the general behavior in Figure 16.1 is representative.

Although the MUSIC algorithm can improve the resolution significantly over
conventional spectral-based estimators, it requires a high SNR and/or N for this to
happen. Several approaches have been proposed to increase resolution, including
beamspace processing and the min-norm algorithm. For a useful comparison of
these and other versions, see [14]. In case of a ULA, the threshold performance
can be significantly enhanced by using a root-finding procedure instead of search-
ing the pseudospectrum for peaks [15]. The idea is to express the spectrum as a
polynomial in the complex variable z = e jφ. ULA steering vector (16.2) is written
as

a(z) = [
1, z, . . . , zm−1]T , (16.20)

and the inverse of the MUSIC pseudospectrum (sometimes termed the “null spec-
trum”) then becomes

P(z) = aT
(
z−1)ÊnÊ∗

n a(z). (16.21)

Regarding P(z) (or rather zm−1P(z)) as a polynomial in z, a standard numeri-
cal routine can be used to compute the 2m − 1 roots. Out of these, the so-called
root-MUSIC algorithm uses the d roots, say {zk}dk=1, that are closest to the unit
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circle. Since z = e jφ where φ = kl sin θ, the root-MUSIC DOA estimates are then

computed as θ̂k = arcsin[angle(zk)/kl], k = 1, . . . ,d. It is known that the root-
MUSIC DOA estimates have the same asymptotic properties as the standard spec-
tral MUSIC. However, the threshold behavior is significantly improved, which ac-
cording to [16] is explained by the fact that the errors in root locations have a large
radial component. A further improvement is obtained by using forward-backward
averaging [16].

The ESPRIT algorithm [17] is related to root-MUSIC, but requires computing
only d roots. It is based on the assumption that the array is composed of two
identical, spatially separated, subarrays that have the same orientation. For a ULA,
there are several ways to construct subarrays. A popular choice is to let elements
1 : m− 1 constitute the first array and 2 : m the second. Let A1 denote the steering
matrix for the first subarray, that is, rows 1 through m − 1 of A(θ). Similarly, A2

contains the m− 1 last rows. Using (16.20), these matrices are related by

A2 = A1 diag
[
z1, . . . , zd

]
, (16.22)

where zk = e jφk is the root corresponding to the kth source. This relation could be
used to determine the roots if A(θ) was known. In general, all that is available is an
estimate of the spatial array covariance matrix R. From the eigendecomposition
(16.17), we collect the signal eigenvectors into Es, which is not identical to A but
it spans the same range space. Therefore, Es = AT for some full-rank d × d matrix
T, and it follows that

E2 = E1T diag
[
z1, . . . , zd

]
T−1, (16.23)

where Es has been partitioned conformably with A. Using the estimated Ês in
(16.23), the submatrices Ê1 and Ê2 will, in general, not span the same range space,
and (16.23) has no exact solution. Instead, a least-squares or total-least-squares
solution Ψ̂ to the relation

Ê2 ≈ Ê1Ψ̂ (16.24)

is computed. The poles {zk}dk=1 are then given as the eigenvalues of Ψ̂, utilizing
that Ψ and diag[z1, . . . , zd] are related by a similarity transformation and therefore
share the same eigenvalues. Finally, the ESPRIT DOA estimates are computed as

θ̂k = arcsin[angle(zk)/kl], k = 1, . . . ,d. The method is computationally very effi-
cient, but exhibits slightly worse performance than root-MUSIC. Similar to the lat-
ter, ESPRIT benefits from forward-backward averaging. A clever implementation
using only real-valued operations (and therefore reduced computational burden)
was proposed in [18].
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16.2.3. Nonlinear least-squares estimation

The subspace-based techniques mentioned above generally provide accurate DOA
estimates at an affordable computational cost. However, the performance degrades
when the signal waveforms are correlated (P nondiagonal), and fail to operate
in the presence of coherent sources. Although forward-backward averaging and
spatial smoothing techniques can mitigate the drawbacks somewhat (e.g., [19]),
these techniques remain suboptimal. Given the model (16.4), a straightforward
approach is to use a nonlinear least-squares (NLLS) [20] fit:

{
θ̂, ŝ

(
tn
)} = arg min

θ,s(tn)

N∑
n=1

∥∥x
(
tn
)− A(θ)s

(
tn
)∥∥2

. (16.25)

This is a separable least-squares problem, and for fixed (but unknown) θ, the so-
lution with respect to the linear parameter s(tn) is

ŝ
(
tn
) = (

A∗A
)−1

A∗x
(
tn
)
. (16.26)

Substituting (16.26) into (16.25) leads to the concentrated NLLS formulation

θ̂ = arg min
θ

Tr
{
Π⊥

A R̂
}

, (16.27)

where Π⊥
A = I − ΠA = I − A(A∗A)−1A∗ is the orthogonal projection onto the

nullspace of A∗. The concentrated form (16.27) has a nice interpretation; Tr{Π⊥
A R̂}

is a measure of the remaining output power after removing all the energy stem-
ming from the hypothetical DOA parameters θ. Clearly, this should reach its min-
imum when θ is close to θ0, because this removes all signal components from R̂. It
is easy to see that the NLLS approach coincides with maximum likelihood (ML) if
the signal waveforms s(tn) are modeled as deterministic parameters and the noise
is assumed to be Gaussian. In many applications, also s(tn) can be regarded as
Gaussian, which leads to a different ML estimator [21], often termed stochastic
ML (SML). Regardless of the actual distribution of the signal waveforms, both the
NLLS and the SML methods provide highly accurate DOA estimates [22]. How-
ever, they both require solution of a d-dimensional nonlinear optimization prob-
lem like (16.27), which is far from trivial. A practical approach at a reasonable
cost is to employ a relaxed optimization procedure, where DOA parameters are
adjusted one at a time. Such a method is usually able to rapidly yield preliminary
estimates in the neighborhood of the true minimizers of the criterion function,
but the local convergence rate is often unacceptably slow. Therefore, once suffi-
ciently good initial estimates are available, it is preferable to switch to a Newton-
type local optimization (see, e.g., [22]). In [23, 24], a modified NLLS criterion is
derived, based on subspace decomposition (16.17). In its concentrated form, the
signal subspace fitting (SSF) criterion takes the form

θ̂ = arg min
θ

Tr
{
Π⊥

A ÊsŴÊ∗
s

}
, (16.28)
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where Ŵ is a positive definite weighting matrix, which should reflect the reliability
of the different eigenvectors appearing in Ês. The optimal choice of weighting, in
terms of minimizing the variance of the DOA estimates, is the diagonal matrix

Ŵ = (
Λ̂s − σ̂2I

)2
Λ̂

−1
s , (16.29)

where the noise variance estimate σ̂2 can be taken as the average of the m − d
smallest eigenvalues of R̂. The SSF formulation has certain advantages over the
data-domain NLLS, in particular when d � m. It is then significantly cheaper to
compute (16.28) than (16.27).

A few techniques have been proposed in the literature [25, 26, 27, 28] for im-
plementing a relaxed optimization of NLLS-type criteria. We will describe the so-
called RELAX procedure due to [26], which simultaneously updates θk and sk(tn),
n = 1, . . . ,N while keeping the other parameters fixed. The method is closely
related to the SAGE (space-alternating generalized expected maximization) algo-
rithm of [25], although the motivation and interpretation is simpler for RELAX.
We present the technique for the data-domain NLLS, noting that the SSF-RELAX
algorithm is obtained by replacing the data matrix X with ÊsŴ1/2. We express
NLLS criterion (16.25) in matrix form as

V(θ, S) = ∥∥X − A(θ)S
∥∥2 =

∥∥∥∥∥∥X −
d∑

k=1

a
(
θk

)
sk

∥∥∥∥∥∥
2

, (16.30)

where ‖ · ‖ denotes the Frobenius matrix norm, X = [x(t1), . . . , x(tN )], S =
[s(t1), . . . , s(tN )], and sk is the kth row of S. When searching for the parameters of
the kth emitter, preliminary estimates of the other signal parameters are assumed
available. Using these, the “cleaned” observation matrix

Xl = X −
∑
k �=l

a
(
θ̂k

)
ŝk (16.31)

is formed. The relaxed criterion

Vl
(
θl, sl

) = ∥∥Xl − a
(
θl
)

sl
∥∥2

(16.32)

is again a separable NLLS criterion, which is minimized by

θ̂l = arg max
θ

∣∣a∗(θ)Xl

∣∣2∥∥a(θ)
∥∥2 , (16.33)

sl = a∗(θ̂l)Xl∥∥a
(
θ̂l
)∥∥2 . (16.34)

Maximizing (16.33) requires a nonlinear optimization over one parameter only.
This is easily accomplished by a course grid search (using FFT in the case of a
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ULA), followed by a local Newton-type optimization. An iteration of the RELAX
algorithm is now to sequentially update θl and sl for l = 1, . . . ,d. At the first
iteration, no initial estimates of θk and sk are available for k > l, so these are
usually ignored by letting sk = 0, k > l. The iterations continue until no signif-
icant change of the DOA parameters is observed, or until one chooses to switch
to a Newton-type iterative search. In case the number of signals is unknown, a
parametric enumeration technique (e.g., [29, 30]) is well suited to work with the
iterative RELAX procedure.

16.3. Spread sources modeling

The DOA estimation problem for spread sources is quite different from the more
commonly considered point source case. Since the individual rays are not resolv-
able, the task is to find a statistical characterization of the incoming energy. Para-
metric estimation methods are based on the availability of a parameterized PDF of
θ. Popular choices are a Gaussian or a uniform PDF. For physics-based statistical
models, consult, for example, [31, 32]. Nonparametric techniques make no such
assumptions, but can on the other hand only deliver a limited description of the
ray statistics, such as the nominal DOA θ0 and the spread σθ .

16.3.1. Nonparametric beamforming techniques

Assume that the signal reaches the receiving antenna array via a single scatter clus-
ter. Provided the distribution of scatterers (DOAs) has a symmetric PDF, a natu-
ral estimate of the nominal DOA θ0 is the location of the peak of beamforming
spectrum (16.13). However, for large spreading factors σθ , the variance of this es-
timate is unacceptably high [33]. The situation is even worse when using a high-
resolution method [34]. A useful remedy is to use the center of gravity rather than
the peak location of the spatial spectrum [35]. Provided the resolution of the lat-
ter is sufficient, it can be shown that pθ(θ) is approximately proportional to the
spatial spectrum. For high SNR, the Capon spectrum has superior resolution, and
may therefore be the preferred choice in this application. Using the definitions of
the mean and variance of a distribution, the estimates are computed according to
[35]

θ̂0 =
∫
θ∈Ω θP(θ)dθ∫
θ∈Ω P(θ)dθ

,

σ̂2
θ =

∫
θ∈Ω

(
θ − θ̂0

)2
P(θ)dθ∫

θ∈Ω P(θ)dθ
,

(16.35)

where P(θ) is either PBF(θ) (16.13) or PCAP(θ) (16.16) and Ω refers to the support
of the distribution, that is, the extent of the DOA cluster. The parameterization
of P(θ) in terms of the physical DOA deserves some comments. For a linear ar-
ray it is perhaps more natural to use the electrical angle φ, which is proportional
to sin θ. However, for reasonably small DOA clusters the difference between the
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parameterizations is negligible. The estimate θ̂0 has in general very good perfor-
mance, while σ̂θ is more sensitive to the choice of Ω and the resolution of P(θ).
These parameters are particularly critical in the presence of several DOA clusters
that are (nearly) overlapping.

16.3.2. Parametric estimation

A parametric estimator exploits the structure (16.8) of Rs in more detail. In gen-
eral, this requires that a parameterized form of the DOA PDF is known, say
pθ(θ;φ). Here, φ is a vector of unknown parameters, for example φ = [θ0, σθ]T

in the Gaussian case. Basically, these parameters are determined by matching the
model (16.8) to the sample covariance R̂. An interesting “semiparametric” method
was recently proposed in [36]. It is based on a generalization of the Capon for-
mulation (16.14). Instead of requiring a unit gain in the look direction a(θ), the
authors of [36] proposed to keep a unit average signal power for a given set of
parameters φ. The optimization problem is thus

min
w

w∗R̂w subject to w∗R̄s(φ)w = 1, (16.36)

where

R̄s(φ) =
∫
θ

a(θ)a∗(θ)pθ(θ;φ)dθ. (16.37)

The resulting generalized Capon (GC) spectrum is obtained as

PGC(φ) = 1

λmax
{

R̂−1R̄s(φ)
} , (16.38)

where λmax{·} refers to the maximum eigenvalue of a matrix. The GC estimates
are now taken as the locations of the highest peaks of PGC(φ). In this way, the pa-
rameters of several clusters can be determined using a search over only one set of
parameters φ. The resolution in [36] is found to be superior to that of previously
proposed computationally efficient estimators [37, 38, 39], although theoretical
support for this claim is yet to be seen. The computational cost for the GC esti-
mator is quite substantial, as it requires computing the maximum eigenvalue of an
m×m matrix for each criterion function evaluation, besides solving the integral in
(16.37). Approximate formulae for the latter is available in special cases [37, 40].
For a ULA and Gaussian-distributed DOAs, the approximate covariance matrix is
given as

R̄s
(
θ0, σθ

) ≈ [
a
(
θ0

)
a∗(θ0

)]	 B, (16.39)

where 	 means elementwise multiplication, and the i jth element of the matrix B
is given as

Bij = e−2[πl( j−i)]2σ2
θ sin2 θ0 . (16.40)
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A general approach to parametric estimation is the principle of maximum
likelihood (ML). If x(t) is modeled as zero-mean temporally white Gaussian, the
ML estimate is found by solving{

φ̂, P̂, σ̂2} = arg min
φ,P,σ2

log
∣∣Rs

∣∣ + Tr
{

R−1
s R̂

}
. (16.41)

Unfortunately, this is a multidimensional (4 in the Gaussian case) nonlinear op-
timization problem, even in the case of a single DOA cluster. In case of several
clusters, the contributions from each will have to be added to Rs, implying an even
increased number of unknown parameters. The method is therefore often deemed
impractical for the current application. A possible way to decrease the complex-
ity is to use a covariance matching estimator (COMET), exploiting the fact that
Rs is linear in the signal and noise powers as is clear from (16.8). The optimally
weighted COMET estimator of [40] is formulated as the following optimization
problem: {

φ̂, P̂, σ̂2} = arg min
φ,P,σ2

∥∥(Rs − R̂
)

R̂−1
∥∥2
. (16.42)

Since Rs is linear in P and σ2, the above is in the form of a separable LS prob-
lem, and the minimum with respect to these parameters can easily be found for a
fixed φ. The result is that only a search over φ is necessary, similar to GC method
(16.38). However, in the presence of several clusters, (16.42) requires a simultane-
ous search over all parameters. This is obviously more costly, but the benefit is an
increased accuracy in large samples, since (16.42) can be shown to yield asymp-
totically the same performance as ML. For the special case of Gaussian-distributed
DOA and a ULA, [41] presents a further simplification of (16.42). An approxi-
mate, but still asymptotically equivalent, technique is derived, where the search
over φ = [θ0, σθ]T is decoupled, so that only a 1D search is necessary. See [41] for
details. A drawback of the covariance-matching-based methods is that they inher-
ently assume a large sample size, and are thus less suited to scenarios where only a
small number of observations are available.

16.4. Parametric channel modeling

Parametric channel modeling refers to the problem of finding a parsimonious rep-
resentation of the wireless channel. The techniques described here use parameteri-
zations in terms of physically meaningful quantities, but it is also possible to apply
pure “black-box” methods. The data is assumed to be sensor outputs collected us-
ing a known transmitted waveform (probing signal). The task is to resolve all sig-
nificant propagation paths and determine their DOAs, time delays, and strengths.

16.4.1. SIMO channels

The simplest case has a single transmitter and multiple receivers. This is referred
to as a SIMO (single-input multiple-output) system. For narrowband signals, in
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the sense that waveforms received via different propagation paths are all coherent,
this is similar to the standard DOA estimation problem. However, since equipment
for channel measurements is typically wideband, we consider the case where time
delays are significant with respect to the inverse bandwidth. Referring to (16.7),
the received signal is then modeled by

x(t) =
d∑

k=1

gka
(
θk

)
s
(
t − τk

)
+ n(t). (16.43)

Here, s(t) represents the transmitted continuous-time waveform, which for a dig-
ital communication system may be given in the form

s(t) =
∞∑

l=−∞
bl p(t − lT), (16.44)

where bl are the (known) information symbols and p(t) the pulse shaping wave-
form with support on 0 ≤ t < T . The noise-free part of (16.43) can be thought of
as the convolution of the transmitted signal s(t) and the SIMO channel

h(t) =
d∑

k=1

gka
(
θk

)
δ
(
t − τk

)
, (16.45)

where δ(·) is the Dirac delta function. The high bandwidth and multiantenna re-
ceiver allows paths to be resolved in both space and time. We therefore assume that
one wishes to obtain signal parameter estimates for the individual components in
(16.43), in contrast to the modeling of spatially extended sources considered in
Section 16.3. Given samples x(tn), n = 1, . . . ,N from (16.43), where the shape of
s(t) is assumed known, the task is to jointly determine θk, τk, and gk. Often, the
channel-sounder equipment does not give access to the raw data, but only non-
parametric channel estimates. This case will be considered later. In essence, we are
facing a 2D estimation problem. To reduce the computational complexity, such
problems are often solved by treating one dimension at a time in some fashion. If
the noise is Gaussian and spatially white, the optimal ML estimator employs the
2D NLLS criterion

V(θ, τ, g) =
N∑
k=1

∥∥∥∥∥∥x
(
tk
)− d∑

l=1

gla
(
θl
)
s
(
tk − τl

)∥∥∥∥∥∥
2

=
∥∥∥∥∥∥X −

d∑
l=1

gla
(
θl
)

s
(
τl
)∥∥∥∥∥∥

2

F

,

(16.46)

where X = [x(t1), . . . , x(tN )] as before, and

s
(
τk
) = [

s
(
t1 − τk

)
, . . . , s

(
tN − τk

)]
(16.47)
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denotes the time-delayed signal vector. For fixed θ=[θ1, . . . , θd] and τ=[τ1, . . . , τd],
it is easy to minimize (16.46) explicitly with respect to g = [g1, . . . , gd]. Substitut-
ing the so-obtained g(θ, τ) back into (16.46) results in a nonlinear function of 2d
parameters. To find the global minimum of this concentrated NLLS criterion is by
no means a simple task. A natural approach is to apply the RELAX idea presented
in Section 16.2.3, see also [42] for an application to time-delay estimation. This
is an iterative procedure, where the joint estimation problem is in each iteration
broken down into computationally simple beamforming-like (i.e., matched filter)
operations. The technique has strong similarities with the SAGE algorithm, which
was successfully applied in [43] to a scenario where also the Doppler-shifts due
to the platform motion were taken into account. Similar to (16.31), (16.32), and
(16.33), the RELAX algorithm for joint DOA and delay estimation consists of the
following steps. First the data is “cleaned” from contributions from all signal paths
except one:

Xl = X −
∑
k �=l

ĝka
(
θ̂k

)
s
(
τ̂k
)
, (16.48)

where ˆ(·) denotes the most recent estimates of the signal parameters correspond-
ing to the other paths. The relaxed criterion is now

Vl
(
θl, τl, gl

) = ∥∥Xl − gla
(
θl
)

s
(
τl
)∥∥2

. (16.49)

Minimizing explicitly with respect to gl results after some simple algebra in the
concentrated criterion

Vl
(
θl, τl

) =
∣∣a∗(θl)Xls∗

(
τl
)∣∣2∥∥a

(
θl
)∥∥2∥∥s

(
τl
)∥∥2 , (16.50)

which is to be maximized with respect to θl and τl. The above allows a nice in-
terpretation. The premultiplication by a∗(θl) is a spatially matched filter, and the
postmultiplication by s∗(τl) acts as a temporally matched filter. The maximum of
this normalized space-time correlation yields the estimates for the lth propagation
path. Once updated estimates of θl and τl are found, the new gl will be

ĝl = a∗(θ̂l)Xls∗
(
τ̂l
)∥∥a

(
θ̂l
)∥∥2∥∥s

(
τ̂l
)∥∥2 . (16.51)

One iteration of the RELAX algorithm is now to sequentially update the triple
{θl, τl, gl} for l = 1, . . . ,d as outlined above. At the first iteration one simply takes
gk = 0, k > l, unless some initial estimates of the parameters of these propagation
paths are available.

The iterative procedure described above is simple in each step. But in high-
resolution scenarios, several iterations may be necessary, implying a high total
computational burden. Simpler subspace-based alternatives have been proposed
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in, for example, [44]. The computationally most efficient techniques employ a
Fourier transform of a nonparametric channel estimate along the delay dimen-
sion. Such a vector-valued impulse response estimate is obtained using a matched
filter, which in matrix form is expressed as

ĥ(t) = Xs∗(t)∥∥s(t)
∥∥2 . (16.52)

In fact, the available channel-sounder data is often given in the form of estimated
impulse responses like the above. A natural approach is now to apply spatial beam-

forming to each available sample of the impulse response, say ĥ(tk), k = 1, . . . ,M,
where tk = (k − 1)T for uniform sampling. In case of a uniform linear array, each

ĥ(tk) can be split into several subvectors, thus effectively creating several snap-
shots. Using this spatial smoothing technique, it is also possible to apply a high-
resolution DOA estimation method, thus enabling closely spaced scatterers with
(nearly) the same propagation delay to be resolved. Taking the discrete Fourier

transform of ĥ(tk) and using (16.45), the nonparametric SIMO transfer function
estimate is modeled by

ĥ
(
ωk

) ≈
d∑
l=1

gla
(
θl
)
e− jωkτl , (16.53)

where ωk = 2π(k − 1)/M, k = 1, . . . ,M are the length-M DFT frequencies. The
approximation above acknowledges the errors in (16.52), which are due to both
noise and to finite temporal resolution. In effect, the Fourier transform has turned
the delay estimation into one of frequency estimation, where τk plays the role of
frequencies. If the array is a ULA, a computationally efficient technique for 2D
frequency estimation (e.g., [45]) can now be employed to determine the signal
parameters, as in [44].

16.4.2. MIMO channels

During the past several years there has been a growing interest in systems that
employ multiple antennas both at the transmitter and the receiver, that is, MIMO
systems. The main reason for this is a potential for dramatically increased capacity.
From a propagation modeling point of view, MIMO transmission opens up an
interesting new possibility. Besides finding the direction of the incoming rays, it is
also possible to determine the directions-of-departure (DOD) of these rays [46],
thus providing a more complete description of the wireless channel. Assuming a
point source model, the received signal is now modeled as

x(t) =
d∑

k=1

gkarx
(
θk

)
aTtx

(
ηk

)
s
(
t − τk

)
+ n(t). (16.54)



Mats Viberg 337

Here, atx(η) denotes the mtx × 1 steering vector for the transmitter array, where
η is the DOD, whereas arx(θ) is the mrx × 1 steering vector for the receiving ar-
ray with θ the DOA. Further, s(t) = [s1(t), . . . , smtx (t)]T contains the transmitted
signal waveforms from each of the transmitting antennas (which are potentially
different). As before, gk is the complex gain of the kth path and τk is the time de-
lay. Given x(tn), n = 1, . . . ,N from (16.54), where s(t) needs to be known to allow
time-delay estimation, one desires to estimate all unknown parameters θk, ηk, τk,
and gk.

In matrix form, the NLLS criterion now takes the form

V(θ,η, τ, g) =
∥∥∥∥∥∥X −

d∑
l=1

glarx
(
θl
)

aTtx
(
ηl
)

S
(
τl
)∥∥∥∥∥∥

2

, (16.55)

where

S
(
τl
) = [

s
(
t1 − τl

)
, . . . , s

(
tn − τl

)]
(16.56)

is the matrix of delayed transmit signals. The above is a 3D estimation problem.
There is no conceptual difference to the 1D case, but the computational complexity
associated with finding the signal parameters increases of course dramatically as
new dimensions are opened up. The RELAX approach applied to (16.55) results in
the following steps. First, a data cleaning is performed by

Xl = X −
∑
k �=l

gkarx
(
θk

)
aTtx

(
ηk

)
s
(
t − τk

)
. (16.57)

The concentrated criterion for the lth signal path is then

Vl
(
θl,ηl, τl

) =
∣∣a∗

rx

(
θl
)

XlS∗(τl)ātx
(
ηl
)∣∣2∥∥arx

(
θl
)∥∥2∥∥S∗(τl)ātx

(
ηl
)∥∥2 . (16.58)

Again, we have the interpretation of space-time beamforming, but now in two
spatial dimensions. The a∗

rx(θl) does spatial beamforming along the rows of Xl (the
receivers), whereas S∗(τl) is a bank of temporal match filters, where each column
(row of S(τl)) corresponds to one transmitter. The outputs of these filters are then
weighted together by the transmit beamformer ātx(ηl), where (·̄) denotes complex
conjugate. The description of the 3D RELAX algorithm is completed by the update
of the amplitude parameter:

ĝl = a∗
rx

(
θ̂l
)

XlS∗(τ̂l)ātx
(
η̂l
)∥∥arx

(
θ̂l
)∥∥2∥∥S∗(τ̂l)ātx

(
η̂l
)∥∥2 . (16.59)

Running the above steps for l = 1, . . . ,d and iterating until convergence, results
ultimately in an approximate solution to the original NLLS problem (16.55).
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The above assumes that the time-domain array data are available. Alterna-
tively, the matrix-valued impulse response can be estimated by

Ĥ(t) = XS∗(t)
(

S(t)S∗(t)
)−1

, (16.60)

or it may be given directly from the measurement equipment. Here, the i jth el-
ement of Ĥ(t) contains the estimated impulse response from transmitter i to re-
ceiver j. Similar to (16.53), the Fourier transform of Ĥ(t) is modeled by

Ĥ
(
ωk

) ≈
d∑
l=1

glarx
(
θl
)

aTtx
(
ηl
)
e− jωkτl , k = 1, . . . ,M. (16.61)

Either Ĥ(t) or Ĥ(ωk) can now be considered as measurement data, the task again
being to determine the signal parameters gl, θl, ηl, and τl for l = 1, . . . ,d. Several
suboptimal techniques have been proposed to attack this problem. For example,
in [47], the 2D ESPRIT method with spatial smoothing is applied to each sam-
ple Ĥ(tk) (the application in [47] is azimuth-elevation estimation, but the same
approach can be applied to the DOD-DOA model). In [46], the delays are first
determined using the 1D ESPRIT technique. A 2D RELAX-like approach is then
applied to the so-obtained channel samples Ĥ(τ̂l). In [48], a 3D subspace method
is proposed, assuming several observations of the matrix-valued transfer function
Ĥ(ωk) to be available. Finally, special methods for the case were only beamformed
transmit and receive data are available are presented in [49, 50].

16.5. Summary

Direction-of-arrival (DOA) estimation is to a great extent a mature research area.
We have in this chapter made an attempt to summarize the most influential meth-
ods to determine the signal parameters. For the standard DOA estimation prob-
lem, the nonlinear least-squares (NLLS) approach provides the most accurate es-
timates of the methods presented herein. An iterative method for computing the
estimates was outlined, based on the RELAX idea presented in [26]. Subspace-
based methods are computationally more attractive, especially the ESPRIT-type
techniques, whenever applicable. These methods can give high resolution at mod-
erate cost, provided the SNR and/or the number of available samples is sufficiently
high. The conventional beamforming approach is applicable only when the array
size is sufficiently large, whereas adaptive beamforming (Capon’s method) can give
increased resolution at high enough SNR.

Besides the standard DOA estimation problem, we have also considered the
case where sources have a significant spatial extent, as compared to the array res-
olution. In this case, the incoming radiation is characterized in statistical terms,
rather than as a point source only. Most commonly, the mean and the standard
deviation of the DOA parameter are sought. In this case, beamforming-type meth-
ods are more likely to be useful than in the point-source case. However, the cen-
ter of gravity of the beamforming spectrum should be used for estimation of the
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mean DOA, rather than its peak location. Among high-resolution methods, a re-
cent generalization of Capon’s method due to [36] is found to be very promising.
Finally, the case of parametric modeling of the communication channel, including
propagation delay was also addressed. This leads to difficult multidimensional es-
timation problems, where easy solutions are likely to fail and optimal techniques
are difficult to implement in practice. Iterative RELAX-type methods were pre-
sented for the various cases. Also subspace methods are available in the literature.
These, and hybrids between subspace and NLLS have been found to give satisfac-
tory results with real data, see, for example, [46, 47, 48].

Abbreviations

COMET Covariance matching estimator

DFT Discrete Fourier transform

DOA Direction-of-arrival

DOD Direction-of-departure

ESPRIT Estimation of signal parameters via rotational invariance techniques

FFT Fast Fourier transform

GC Generalized Capon

LOS Line-of-sight

LS Least-squares

MIMO Multiple-input multiple-output

ML Maximum likelihood

MUSIC Multiple signal classification

NLLS Nonlinear least-squares

PDF Probability density function

SAGE Space-alternating generalized expected maximization

SIMO Single-input multiple-output

SML Stochastic maximum likelihood

SNR Signal-to-noise ratio

SSF Signal subspace fitting

ULA Uniform linear array
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